ISSN: 0304-128X ISSN: 2233-9558
Copyright © 2024 KICHE. All rights reserved

Overall

Language
english
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received June 27, 2023
Revised June 30, 2023
Accepted June 30, 2023
Acknowledgements
This study was also supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (2022R1A2C1002901).
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

Most Cited

Green Synthesis of Dual Emission Nitrogen-Rich Carbon Dot and Its Use in Ag+ Ion and EDTA Sensing

School of Chemical Engineering, University of Ulsan, 93 Daehak-ro, Nam-gu, Ulsan, 44610, Korea
shhur@ulsan.ac.kr
Korean Chemical Engineering Research, August 2023, 61(3), 463-471(9), 10.9713/kcer.2023.61.3.463 Epub 31 August 2023
downloadDownload PDF

Abstract

Nitrogen-rich carbon dots (NDots) were synthesized by using uric acid as carbon and nitrogen sources. The as-synthesized NDots showed strong dual emissions at 420 nm and 510 nm with excitation at 350 nm and 460 nm, respectively. The physicochemical analyses such as X-ray photoelectron spectroscopy, Transmission electron microscopy and Fourier transform infrared spectroscopy were used to analyze the chemical, physical and morphological structures of NDots. The as-synthesized NDots exhibited wide linear range (0-100 µM) and very low detection limit (124 nM) in Ag+ ion sensing. In addition, Ag+ saturated NDots could be used as an EDTA sensor by the EDTA induced PL recovery.

References

1. Hoa, L. T., Tien, H. N., Luan, V. H., Chung, J. S. and Hur, S. H.,“Fabrication of a Novel 2D-graphene/2D-NiO Nanosheet-based
Hybrid Nanostructure and Its Use in Highly Sensitive NO2 Sensors,” Sens. Actuators B: Chem., 185, 701-705(2013).
2. Hoa, L. T., Chung, J. S. and Hur, S. H., “A Highly Sensitive Enzyme-free Glucose Sensor Based on Co3O4 Nanoflowers and 3D Graphene Oxide Hydrogel Fabricated via Hydrothermal Synthesis,” Sens. Actuators B: Chem., 223, 76-82(2016).
3. Choi, H., Ko, S. J., Choi, Y., Joo, P., Kim, T., Lee, B. R., Jung, J.W., Choi, H. J., Cha, M., Jeong, J. R., Hwang, I. W., Song, M.H., Kim, B. S. and Kim, J. Y., “Versatile Surface Plasmon Resonance of Carbon-dot-supported Silver Nanoparticles in Polymer Optoelectronic Devices,” Nat. Photon., 7(9), 732-738(2013).
4. Li, X., Rui, M., Song, J., Shen, Z. and Zeng, H., “Carbon and Graphene Quantum Dots for Optoelectronic and Energy Devices:A Review,” Adv. Funct. Mater., 25(31), 4929-4947(2015).
5. Li, H., He, X., Kang, Z., Huang, H., Liu, Y., Liu, J., Lian, S.,Tsang, C. H. A., Yang, X. and Lee, S. T., “Water-Soluble Fluorescent Carbon Quantum Dots and Photocatalyst Design,” Angew.Chem. Int. Ed., 122(26), 4532-4536(2010).
6. Martindale, B. C. M., Hutton, G. A. M., Caputo, C. A. and Reisner, E., “Solar Hydrogen Production Using Carbon Quantum Dots and a Molecular Nickel Catalyst,” J. Am. Chem. Soc., 137(18),6018-6025(2015).
7. Huang, Q., Zhang, H., Hu, S., Li, F., Weng, W., Chen, J., Wang,Q., He, Y., Zhang, W. and Bao, X., “A Sensitive and Reliable Dopamine Biosensor was Developed Based on the Au@carbon Dots–chitosan Composite Film,” Biosens. Bioelectron., 52, 277-280(2014).
8. Cui, X., Zhu, L., Wu, J., Hou, Y., Wang, P., Wang, Z. and Yang,M., “A Fluorescent Biosensor Based on Carbon Dots-labeled Oligodeoxyribonucleotide and Graphene Oxide for Mercury (II) Detection,” Biosens. Bioelectron., 63, 506-512(2015).
9. Luo, P. G., Sahu, S., Yang, S. T., Sonkar, S. K., Wang, J., Wang,H., LeCroy, G. E., Cao, L. and Sun, Y. P., “Carbon “quantum”Dots for Optical Bioimaging,” J. Mater. Chem. B, 1(16), 2116-2127(2013).
10. Zhu, S., Meng, Q., Wang, L., Zhang, J., Song, Y., Jin, H., Zhang,K., Sun, H., Wang, H. and Yang, B., “Highly Photoluminescent Carbon Dots for Multicolor Patterning, Sensors, and Bioimaging,” Angew. Chem. Int. Ed., 52(14), 3953-3957(2013).
11. Guo, Y., Wang, Z., Shao, H. and Jiang, X., “Hydrothermal Synthesis of Highly Fluorescent Carbon Nanoparticles from Sodium
Citrate and Their Use for the Detection of Mercury Ions,” Carbon, 52, 583-589(2013).
12. Liu, Y., Zhou, Q., Yuan, Y. and Wu, Y., “Hydrothermal Synthesis of Fluorescent Carbon Dots from Sodium Citrate and Polyacrylamide and Their Highly Selective Detection of Lead and Pyrophosphate,” Carbon, 115, 550-560(2017).
13. Yang, Z. C., Wang, M., Yong, A. M., Wong, S. Y., Zhang, X.-H.,Tan, H., Chang, A. Y., Li, X. and Wang, J., “Intrinsically Fluorescent Carbon Dots with Tunable Emission Derived from Hydrothermal Treatment of Glucose in the Presence of Monopotassium Phosphate,” Chem. Comm., 47(42), 11615-11617(2011).
14. Wang, L., Zhu, S. J., Wang, H. Y., Qu, S. N., Zhang, Y. L., Zhang,J. H., Chen, Q. D., Xu, H. L., Han, W., Yang, B., Sun, H. B., “Common Origin of Green Luminescence in Carbon Nanodots and Graphene Quantum Dots,” ACS Nano, 8(3), 2541-2547(2014).
15. Hu, S., Huang, Q., Lin, Y., Wei, C., Zhang, H., Zhang, W., Guo,Z., Bao, X., Shi, J. and Hao, A., “Reduced Graphene Oxide-carbon Dots Composite as an Enhanced Material for Electrochemical Determination of Dopamine,” Electrochim. Acta, 130, 805-809(2014).
16. Song, Y., Zhu, S., Zhang, S., Fu, Y., Wang, L., Zhao, X. and Yang, B., “Investigation from Chemical Structure to Photoluminescent Mechanism: a Type of Carbon Dots from the Pyrolysis of Citric Acid and An Amine,” J. Mater. Chem. C, 3(23), 5976-5984(2015).
17. Zhou, M., Zhou, Z., Gong, A., Zhang, Y. and Li, Q., “Synthesis of Highly Photoluminescent Carbon Dots via Citric Acid and Tris for Iron(III) Ions Sensors and Bioimaging,” Talanta, 143,107-113(2015).
18. Wang, L. and Zhou, H. S., “Green Synthesis of Luminescent Nitrogen-Doped Carbon Dots from Milk and Its Imaging Application,”
Anal. Chem., 86(18), 8902-8905(2014).
19. De, B. and Karak, N., “A Green and Facile Approach for the Synthesis of Water Soluble Fluorescent Carbon Dots from Banana
Juice,” RSC Adv., 3(22), 8286-8290(2013).
20. Mehta, V. N., Jha, S., Basu, H., Singhal, R. K. and Kailasa, S. K.,“One-step Hydrothermal Approach to Fabricate Carbon Dots From Apple Juice for Imaging of Mycobacterium and Fungal Cells,” Sens. Actuators B: Chem., 213, 434-443(2015).
21. Sun, D., Ban, R., Zhang, P. H., Wu, G. H., Zhang, J. R. and Zhu,J. J., “Hair Fiber as a Precursor for Synthesizing of Sulfur- and Nitrogen-co-doped Carbon Dots with Tunable Luminescence Properties,” Carbon, 64, 424-434(2013).
22. Teng, X., Ma, C., Ge, C., Yan, M., Yang, J., Zhang, Y., Morais,P. C. and Bi, H., “Green Synthesis of Nitrogen-doped Carbon Dots From Konjac Flour with “off-on” Fluorescence by Fe3+ and l-lysine for Bioimaging,” J. Mater. Chem. B, 2(29), 4631-4639(2014).
23. Jiang, C., Wu, H., Song, X., Ma, X., Wang, J. and Tan, M., “Presence of Photoluminescent Carbon Dots in Nescafe® Original Instant Coffee: Applications to Bioimaging,” Talanta, 127, 68-74(2014).
24. Xu, Q., Pu, P., Zhao, J., Dong, C., Gao, C., Chen, Y., Chen, J.,Liu, Y. and Zhou, H., “Preparation of Highly Photoluminescent Sulfur-doped Carbon Dots for Fe(iii) Detection,” J. Mater. Chem.A, 3(2), 542-546(2015).
25. Bourlinos, A. B., Trivizas, G., Karakassides, M. A., Baikousi,M., Kouloumpis, A., Gournis, D., Bakandritsos, A., Hola, K.,Kozak, O., Zboril, R., Papagiannouli, I., Aloukos, P., Couris, S.,“Green and Simple Route Toward Boron Doped Carbon Dots with Significantly Enhanced Non-linear Optical Properties,”Carbon, 83, 173-179(2015).
26. Wang, F., Hao, Q., Zhang, Y., Xu, Y. and Lei, W., “Fluorescence Quenchometric Method for Determination of Ferric Ion Using Boron-doped Carbon Dots,” Microchim. Acta, 183(1), 273-279(2016).
27. Edison, T. N. J. I., Atchudan, R., Shim, J. J., Kalimuthu, S., Ahn,B. C. and Lee, Y. R., “Turn-off Fluorescence Sensor for the Detection of Ferric Ion in Water Using Green Synthesized N-doped Carbon Dots and its Bio-imaging,” J. Photochem. Photobiol. B:Biol., 158, 235-242(2016).
28. Wei, W., Xu, C., Wu, L., Wang, J., Ren, J. and Qu, X., “NonEnzymatic-Browning-Reaction: A Versatile Route for Production of Nitrogen-Doped Carbon Dots with Tunable Multicolor Luminescent Display,” Sci. Rep., 4, 3564(2014).
29. Yang, Z., Xu, M., Liu, Y., He, F., Gao, F., Su, Y., Wei, H. and Zhang, Y., “Nitrogen-doped, Carbon-rich, Highly Photoluminescent Carbon Dots from Ammonium Citrate,” Nanoscale, 6(3),1890-1895(2014).
30. Yan, F., Zou, Y., Wang, M., Mu, X., Yang, N. and Chen, L., “Highly Photoluminescent Carbon Dots-based Fluorescent Chemosensors for Sensitive and Selective Detection of Mercury Ions and Application of Imaging in Living Cells,” Sens. Actuators B:Chem., 192, 488-495(2014).
31. Hrbáč, J., Sichertová, D., Bancı́ řová, M., Lasovský, J., Papadopoulos, K. and Nikokavouras, J., “Sensitized Chemiluminescence
in Micellar Mixtures of Phthalhydrazide and Selected Dyes,” J.Photochem. Photobiol. A., 167(2-3), 169-175(2004).
32. Zhang, R. and Chen, W., “Nitrogen-doped Carbon Quantum Dots:Facile Synthesis and Application as a “turn-off” Fluorescent Probe
for Detection of Hg2+ Ions,” Biosens. Bioelectron., 55, 83-90(2014).
33. Sharifi, T., Nitze, F., Barzegar, H. R., Tai, C. W., Mazurkiewicz,M., Malolepszy, A., Stobinski, L. and Wågberg, T., “Nitrogen
Doped Multi Walled Carbon Nanotubes Produced by CVD-correlating XPS and Raman Spectroscopy for the Study of Nitrogen Inclusion,” Carbon, 50(10), 3535-3541(2012).
34. Vasuki, G. and Selvaraju, R., “Growth and Characterization of Uric Acid Crystals,” Int. J. Sci. Res., 3(8), 696-699(2014).
35. Xu, Y., Wu, M., Liu, Y., Feng, X. Z., Yin, X. B., He, X. W. and Zhang, Y. K., “Nitrogen-Doped Carbon Dots: A Facile and General Preparation Method, Photoluminescence Investigation, and Imaging Applications,” Chem. - Eur. J., 19(7), 2276-2283(2013).
36. Dong, Y., Pang, H., Yang, H. B., Guo, C., Shao, J., Chi, Y., Li,C. M. and Yu, T., “Carbon-Based Dots Co-doped with Nitrogen and Sulfur for High Quantum Yield and Excitation-Independent Emission,” Angew. Chem. Int. Ed., 52(30), 7800-7804(2013).
37. Wu, G., Feng, M. and Zhan, H., “Generation of Nitrogen-doped Photoluminescent Carbonaceous Nanodots via the Hydrothermal
Treatment of Fish Scales for the Detection of Hypochlorite,”RSC Adv., 5(55), 44636-44641(2015).
38. Tabaraki, R., Nateghi, A., “Nitrogen- Doped Graphene Quantum Dots: “Turn-off” Fluorescent Probe for Detection of Ag+ Ions,”
J. Fluoresc., 26(1), 297-305(2016).
39. Gao, Z., Lin, Z., Chen, X., Zhong, H. and Huang, Z., “A Fluorescent Probe Based on N-doped Carbon Dots for Highly Sensitive Detection of Hg2+ in Aqueous Solutions,” Anal. Methods 8(10), 2297-2304(2016).
40. Datta, K. K. R., Qi, G., Zboril, R. and Giannelis, E. P., “Yellow Emitting Carbon Dots with Superior Colloidal, Thermal, and Photochemical Stabilities,” J. Mater. Chem. C, 4(41), 9798-9803 (2016).
41. Zhu, S., Zhang, J., Tang, S., Qiao, C., Wang, L., Wang, H., Liu, X., Li, B., Li, Y., Yu, W., Wang, X., Sun, H. and Yang, B., “Surface Chemistry Routes to Modulate the Photoluminescence of Graphene Quantum Dots: From Fluorescence Mechanism to Up-Conversion Bioimaging Applications,” Adv. Funct. Mater.,22(22), 4732-4740(2012).
42. Zhang, Y., Cui, P., Zhang, F., Feng, X., Wang, Y., Yang, Y. and Liu,X., “Fluorescent Probes for “off–on” Highly Sensitive Detection of Hg2+ and L-cysteine Based on Nitrogen-doped Carbon Dots,”Talanta, 152, 288-300(2016).
43. Gao, Z., Lin, Z., Chen, X., Lai, Z. and Huang, Z.-Y., “Carbon Dots-based Fluorescent Probe for Trace Hg2+ Detection in Water Sample,” Sens. and Actuators B: Chem., 222, 965-971(2016).
44. Suryawanshi, A., Biswal, M., Mhamane, D., Gokhale, R., Patil,S., Guin, D. and Ogale, S., “Large Scale Synthesis of Graphene Quantum Dots (GQDs) from Waste Biomass and Their Use as an Efficient and Selective Photoluminescence on-off-on Probe for Ag+ Ions,” Nanoscale, 6(20), 11664-11670(2014).
45. Algarra, M., Campos, B. B., Radotic, K., Mutavdzic, D., Bandosz, T., Jimenez-Jimenez, J., Rodriguez-Castellon, E. and Esteves da Silva, J. C. G., “Luminescent Carbon Nanoparticles: Effects of Chemical Function Alization, and Evaluation of Ag+ Sensing Properties,” J. Mater. Chem. A, 2(22), 8342-8351(2014).
46. Cayuela, A., Soriano, M. L., Kennedy, S. R., Steed, J. W. and Valcárcel, M., “Fluorescent Carbon Quantum Dot Hydrogels for Direct Determination of Silver Ions,” Talanta, 151, 100-105(2016).
47. Qian, Z., Ma, J., Shan, X., Feng, H., Shao, L. and Chen, J., “Highly Luminescent N-Doped Carbon Quantum Dots as an Effective Multifunctional Fluorescence Sensing Platform,” Chem. - A Eur.J., 20(8), 2254-2263(2014)
48. Zheng, M., Xie, Z., Qu, D., Li, D., Du, P., Jing, X. and Sun, Z.,“On-Off-On Fluorescent Carbon Dot Nanosensor for Recognition of Chromium(VI) and Ascorbic Acid Based on the Inner Filter Effect,” ACS Appl. Mater. Interfaces, 5(24), 13242-13247(2013).
49. Huang, S., Qiu, H., Zhu, F., Lu, S. and Xiao, Q., “Graphene Quantum Dots as On-off-on Fluorescent Probes for Chromium (VI) and Ascorbic Acid,” Microchim. Acta 182(9), 1723-1731(2015).
50. Han, C., Wang, R., Wang, K., Xu, H., Sui, M., Li, J. and Xu, K.,“Highly Fluorescent Carbon Dots as Selective and Sensitive “on-off-on” Probes for Iron(III) Ion and Apoferritin Detection and Imaging in Living Cells,” Biosen. Bioelectron., 83, 229-236(2016).
51. Ajitha, B., Kumar Reddy, Y. A., Reddy, P. S., Jeon, H. J. and Ahn,C. W., “Role of Capping Agents in Controlling Silver Nanoparticles Size, Antibacterial Activity and Potential Application as Optical Hydrogen Peroxide Sensor,” RSC Adv., 6(42), 36171-36179(2016).

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
Phone No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Chemical Engineering Research 상단으로