ISSN: 0304-128X ISSN: 2233-9558
Copyright © 2024 KICHE. All rights reserved

Overall

Language
korean
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received June 20, 2022
Accepted August 8, 2022
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

Most Cited

수소/이산화탄소 가스분리용 다공성 물질 탐색 및 고속전산스크리닝 연구동향

Discovery of Porous Materials for H2/CO2 Gas Separation and High-Throughput Computational Screening

부경대학교 에너지자원공학과, 48513 부산광역시 남구 용소로 45
Department of Energy Resources Engineering, Pukyong National University, Busan, 48513, Korea
Korean Chemical Engineering Research, February 2023, 61(1), 1-7(7), 10.9713/kcer.2023.61.1.1 Epub 26 January 2023
downloadDownload PDF

Abstract

가스 분리 기술은 혼합 가스로부터 신재생에너지 자원 및 환경 오염 물질과 관련된 수소(H2) 및 이산화탄소(CO2)와 같은 주요 가스를 효과적으로 추출할 수 있기 때문에 매우 유용하다. 에너지 소비를 줄이기 위한 가스 분리 기술로서 분리막 공정과 흡착 공정이 널리 사용되고 있는데, 두 공정 모두 분리막과 흡착제의 역할을 하는 다공성 물질이 필요 하다. 특히 다공성 물질의 한 종류인 금속-유기물 골격체(Metal-organic frameworks, MOFs)는 가스 흡착 및 분리를 목 적으로 발전되었다. 그런데 MOF 구조의 수가 지속적으로 증가하고 있지만 시행착오 실험을 통해 우수한 MOF 기반 의 분리막과 흡착제를 발견하는데 효율적이지 않다. 따라서 수소와 이산화탄소를 분리할 수 있는 고성능 다공성 물질 의 발견을 가속화하기 위해 고속전산스크리닝(High-throughput computational screening) 기술이 등장하였고 현재까지 활용되고 있다. 본 리뷰에서는 다공성 물질에 대한 중요한 연구와 수소와 이산화탄소의 가스 분리에 초점을 맞춘 고속 전산스크리닝 기술을 소개한다.
Gas separation technology becomes more useful because key gases such as H2 and CO2 regarding renewable energy resources and environmental pollutant can be effectively extracted in mixed gases. For reducing energy consumption on gas separation, membrane and adsorption processes are widely used. In both processes, porous materials are needed as membrane and adsorbent. In particular, metal-organic frameworks (MOFs), one class of the porous materials, have been developed for the purpose of gas adsorption and separation. While the number of the MOF structures is increasing due to chemical and structural tunability, good MOF membranes and adsorbents have been rarely reported by trial-and-error experiments. To accelerate the discovery of high-performing porous materials that can separate H2 and CO2, a high-throughput computational screening technique was used as efficient skill. This review introduces crucial studies of porous materials and the high-throughput computational screening works focusing on gas separation of H2 and CO2.

References

Chu S, Cu Y, Liu N, Nat. Mater., 16, 16 (2016)
Khan MA, Al-Shankiti I, Ziania A, Idriss H, Sustain. Energy Fuels, 5, 1085 (2021)
Tollefson J, Nature, 464, 1262 (2010)
Chu S, Science, 325, 1599 (2009)
Tao Y, Xue Q, Liu Z, Shan M, Ling C, Wu T, Li X, ACS Appl. Mater. Interfaces, 6, 8048 (2014)
Jaschik J, Tanczyk M, Warmuzinski K, Jaschik M, Chem. Process Eng., 30, 511 (2009)
Sircar S, Waldron WE, Rao MB, Anand M, Sep. Purif. Technol., 17, 11 (1999)
Park JH, Kim JN, Cho SH, Kim JD, Yang RT, Chem. Eng. Sci., 53, 3951 (1998)
Sholl DS, Lively RP, Nature, 532, 435 (2016)
U.S. Department of Energy (DOE), “Materials for Separation Technologies: Energy and Emission Reduction Opportunities,” (2005).
Sun C, Wen B, Bai B, Chem. Eng. Sci., 138, 616 (2015)
Yang RT, Gas Separation by Adsorption Progress, Butterworth, Boston(1987).
Feng X, Pan CY, Ivory J, Ghosh D, Chem. Eng. Sci., 53, 1689 (1998)
Lin JYS, Science, 353, 6295 (2016)
Sanders DF, Smith ZP, Guo R, Robeson LM, McGrath JE, Paul DR, Freeman BD, Polymer, 54, 4729 (2013)
Peters T, Caravella A, Membranes, 9, 1 (2019)
Nomura M, Ono K, Gopalakrishnan S, Sugawara , Nakao SI, J. Membr. Sci., 251, 151 (2005)
Duval JM, Kemperman AJB, Folkers B, Mulder MHV, Desgrandchamps G, Smolders CA, J. Appl. Polym. Sci., 54, 409 (1994)
Murray LJ, Dincă M, Long JR, Chem. Soc. Rev., 38, 1294 (2009)
Dincă M, Dailly A, Liu Y, Brown CM, Neumann DA, Long JR, J. Am. Chem. Soc., 128, 16876 (2006)
Han SS, Goddard WA III, J. Am. Chem. Soc., 129, 8422 (2007)
Blomqvist A, Araújo CM, Srepusharawoot P, Ahuja RL, Proc. Natl. Acad. Sci., 104, 20173 (2007)
Latroche M, Surblé S, Serre C, Mellot-Draznieks C, Llewellyn PL, Lee JH, Chang JS, Sung HJ, Férey G, Angew. Chem.-Int. Edit., 45, 8227 (2006)
Mavrandonakis A, Klontzas E, Tylianakis E, Froudakis GE, J. Am. Chem. Soc., 131, 13410 (2009)
Mavrandonakis A, Tylianakis E, Stubos AK, Froudakis GE, J. Phys. Chem. C, 112, 7290 (2008)
Daglar H, Keskin S, Coord. Chem. Rev., 422, 213470 (2020)
An J, Geib SJ, Rosi NL, J. Am. Chem. Soc., 132, 38 (2010)
Bae YS, Snurr RQ, Angew. Chem.-Int. Edit., 50, 11586 (2011)
Wang B, Côté AP, Furukawa H, O’Keeffe M, Yaghi OM, Nature, 453, 207 (2008)
Thallapally PK, Tian J, Kishan MR, Fernandez CA, Dalgarno SJ, McGrail PB, Warren JE, Atwood JL, J. Am. Chem. Soc., 130, 16842 (2008)
Beck DW, Zeolite Molecular Sieves, John Wiley & Sons, New York(1974).
Li H, Eddaoudi M, Groy TL, Yaghi OM, J. Am. Chem. Soc., 120, 8571 (1998)
Furukawa H, Cordova KE, Science, 341, 1230444 (2013)
Chen B, Yang Z, Zhu Y, Xia Y, J. Mater. Chem. A, 2, 16811 (2014)
Li JR, Sculley J, Zhou HC, Chem. Rev., 112, 869 (2012)
Dybtsev DN, Chun H, Yoon SH, Kim D, Kim K, J. Am. Chem. Soc., 126, 32 (2004)
Yeo BC, Kim D, Kim H, Han SS, J. Phys. Chem. C, 120, 24224 (2016)
Park J, Lively RP, Sholl DS, J. Mater. Chem. A, 5, 12258 (2017)
Chung YG, Gómez-Gualdrón DA, Li P, Leperi KT, Deria P, Zhang H, Vermeulen NA, Stoddart JF, You F, Hupp JT, Sci. Adv., 2, 1600909 (2016)
Krishna R, van Baten JM, Phys. Chem. Chem. Phys., 13, 10593 (2011)
Moghadam PZ, Li A, Wiggin SB, Tao A, Maloney AGP, Wood PA, Ward SC, Fairen-Jimenez D, Chem. Mater., 29, 2618 (2017)
Allen FH, Acta Crystallogr. Sect. B-Struct. Sci., 58, 380 (2002)
Koyuturk B, Altintas C, Kinik FP, Keskin S, Uzun A, J. Phys. Chem. C, 121, 10370 (2017)
Altintas C, Avci G, Daglar H, Gulcay E, Erucar I, Keskin S, J. Mater. Chem. A, 6, 5836 (2018)
Avci G, Velioglu S, Keskin S, ACS Appl. Mater. Interfaces, 10, 33693 (2018)
Liszka M, Malik T, Manfrida G, Energy, 45, 142 (2012)
Martinez I, Romano MC, Chiesa P, Grasa G, Murillo R, Int. J. Hydrog. Energy, 38, 15180 (2013)
Dzuryk S, Rezaei E, Ind. Eng. Chem. Res., 59, 18907 (2020)
Lim DW, Ha J, Oruganti Y, Moon HR, Mater. Chem. Front., 5, 4022 (2021)
Freeman BD, Macromolecules, 32, 375 (1999)
Kang Z, Xue M, Fan L, Huang L, Guo L, Wei G, Chen B, Qiu S, Energy Environ. Sci., 7, 4053 (2014)
Kang Z, Wang S, Fan L, Zhang M, Kang W, Pang J, Du X, Guo H, Wang R, Sun D, Chem. Commun., 1, 1 (2018)
Du Z, Liu C, Zhai J, Guo X, Xiong Y, Su W, He G, Catalysts, 11, 393 (2021)
Banu AM, Friedrich D, Brandani S, Dueren T, Ind. Eng. Chem. Res., 52, 9946 (2013)
Agueda VI, Delgado JA, Uguina MA, Brea P, Spjelkavik AI, Blom R, Grande C, Chem. Eng. Sci., 124, 159 (2015)
Brea P, Delgado J, Águeda VI, Gutiérrez P, Uguina MA, Microporous Mesoporous Mater., 286, 187 (2019)
Tong M, Yang Q, Zhong C, Microporous Mesoporous Mater., 210, 142 (2015)
Willems TF, Rycroft CH, Kazi M, Meza JC, Haranczyk M, Microporous Mesoporous Mater., 149, 134 (2012)
Bakhshandeha A, Levin Y, J. Chem. Phys., 156, 134110 (2022)
Li S, Chung YG, Snurr RQ, Langmuir, 32, 10368 (2016)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
Phone No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Chemical Engineering Research 상단으로