Articles & Issues
- Language
- english
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received May 2, 2025
Revised August 28, 2025
Accepted December 4, 2025
Available online December 22, 2025
-
This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits
unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
All issues
Evaluation of Physicochemical Parameters in Methylene Blue Adsorption on to Activated Biochar (ABC)
https://doi.org/10.9713/kcer.2026.64.1.105150
Download PDF
Abstract
The increasing focus on environmental preservation and protection necessitates innovative methods and technologies to address various forms of waste. Adsorption using activated carbon is a well-established and promising approach for removing pollutants, particularly methylene blue, from wastewater. This study aims to develop a carbon- rich adsorbent derived from biomass-based date seeds and transform it into activated biochar (ABC). Important physicochemical parameters, including activation temperature, mass loss during activation, biochar particle sizes, initial methylene blue concentration, adsorption time, and adsorbent mass were examined in detail to determine their effects on adsorption capacity. The activated biochar's morphological structure and functional groups were characterized using SEM, XRD, and FTIR techniques. The results revealed that the optimal activation temperature for producing ABC was 1000 °C, yielding 99.15% efficiency and an adsorption capacity (qe) of 19.83 mg/g. The effective adsorption time was determined to be 60 minutes, achieving an adsorption efficiency of 96.16% and a q value of 9.61 mg/g.
References
2. Mohan, D. and Pittman, C. U., “Activated Carbons and Low- Cost Adsorbents for Remediation of Tri- and Hexavalent Chro- mium from Water,” J. Hazard. Mater., 137, 762-811(2006).
3. Lemoine, A. and Tounian, P., “Allergie Aux Colorants Alimen- taires: Une Pathologie À Évoquer Avec Parcimonie,” Rev. Fr. Allergol. Elsevier, 58(7), 506-512(2018).
4. Gohar, J., Naeem, A., Farah, D., Tahir, B., Shafaq, J. and Sadaf, S., “Efficient Removal of Dyes in Textile Effluents Using Alu- minum-Based Coagulant,” Rev. Fr. Allergol. Elsevier, 7(3), 197- 207(2021).
5. Brower, G. R. and Reed, G. D., “Economical Pre-treatment for Color Removal from Textile Dye Wastes,” In: Proc. 41st Indus- trial Waste Conference, Purdue University: West Lafayette, Indi- ana, 612(1985).
6. Majewska-Nowak, K., “Effect of Flow Conditions on Ultrafiltra- tion Efficiency of Dye Solutions and Textile Effluents,” Desalina- tion, 71(2), 127-135(1989).
7. Shendrik, O. R., “Electro Membrane Removal of Organic Dyes from Wastewaters,” Kimiyi Technology Vody, 11, 467-472(1989).
8. Ding, Z., Min, C. W. and Hui, W. Q., “A Study on the Use of Bipo- lar Particles – electrode in the Decolorization of Dyeing Effluents and Its Principle,” Water Sci. Technol., 19(3/4), 39-42(1987).
9. Jawad, A. H., Al-Heetimi, D. T. A. and Mastuli, M. S., “Biochar from Orange (Citrus Sinensis) Peels by Acid Activation for Methy- lene Blue Adsorption,” Iran. J. Chem. Chem. Eng., 38, 291-105(2019).
10. Nawawi, W. I. W., Ain, S. K., Zaharudin, R., Jawad, A. H., Ishak, M. A. N., Ismail, S. K. and Sahid, S., “New TiO2/DSAT Immo- bilization System for Photodegradation of Anionic and Cationic Dyes,” Int. J. Photoenergy, 3, 1-6(2015).
11. Coia-Ahlman, S. and Groff, K. A., “Textile Wastes,” J. Water Polut. Control Fed., 62, 473-478(1990).
12. Zbair, M., Ahsaine, H. A. and Anfar, Z. J., “Porous Carbon by Microwave-Assisted Pyrolysis: An Effective and Low-Cost Adsor- bent for Sulfamethoxazole Adsorption and Optimization Using Response Surface Methodology,” Journal of Cleaner Prod., 202, 571-581(2018).
13. Basha, N. A., Rathinavel, T. and Sridharan, H., “Activated Car- bon from Coconut Shell: Synthesis and Its Commercial Applications
- A Recent Review,” Appl. Sci. Eng. Prog., 16(2), 2022(2023).
14. Chebbi, R., Fadel, A. and Aidi, A., “The Elimination by Natural Algerian Clay of Chromium Ions from Salt Water,” Ann. Chim. - Sci. Mat., 45(2), 105-112(2021).
15. Yamin, Y., Hussein, M. Z. and Ahmad, F., “Adsorption of Meth- ylene Blue onto Treated Activated Carbon,” Malays. J. Anal. Sci., 11(11), 400-406(2007).
16. Seyed, A. M., Davood, S., Arezoo, Mand. and Parastoo, D., “Meth- ylene Blue Removal Using Prepared Activated Carbon from Grape Wood Wastes: Adsorption Process Analysis and Model- ing,” Water Qua. Res. J ., 57(1), 1-19(2021).
17. Tran, H. N., Wen, Y. C., Wang, Y. F. and You, S. J., “Highly Efficient Removal of Hazardous Aromatic Pollutants by Micro- Nano Spherical Carbons Synthesized from Different Chemical Activation Methods: A Comparison Study,” Environ. Technol., 40, 1376-1391(2019).
18. Ammar Fadel, Saci Nacef, “Examination of an Algerian Clay in the Retention of Zinc Ions Chargedin Brackish Water,” Korean Chem. Eng. Res., 55(5), 685-689(2017).
19. Bounoukta, C. E., Megías-Sayago, C., Navarro, J. C., Ammari, F., Ivanova, S., Centeno, M. Á. and Odriozola, J. A., “Function- alized Biochars as Supports for Ru/C Catalysts: Tunable and Efficient Materials for γ-Valerolactone Production,” Nanomateri- als, 13(6), 1129(2023).
20. MacHado, L. M. M., Lütke, S. F., Perondi, D., Godinho, M., Oliveira, M. L. S., Collazzo, G. C. and Dotto, G. L., “Treatment of Effluents Containing 2-Chlorophenol by Adsorption Onto Chemically and Physically Activated Biochars,” J. Environ. Chem. Eng., 8(6), 104473(2020).
21. Sujiono, E. H., Zabrian, D., Zurnansyah, Mulyati, V., Zharvan, and Samnur, N. A., “Fabrication and Characterization of Coconut Shell Activated Carbon Using Variation Chemical Activation for Wastewater Treatment Applications,” Results Chem., 4, 100291
(2022).
22. Byamba-Ochir, N., Buyankhishig, B., Byambasuren, N. and Suren- jav, E., “Characterization of Silver Loaded Activated Carbon Prepared Under Supercritical Water Conditions,” Solid State Phenomena, 288, 59-64(2019).
23. Freitas, J. V., Nogueira, F. G. E. and Farinas, C. S., “Coconut Shell Activated Carbon as an Alternative Adsorbent Inhibitor from Lignocellulosic Biomass Pretreatment,” Ind. Crop. Prod., 137(12), 16-23(2019).
24. Asep Bayu Dani Nandiyanto, Rosi Oktiani, Risti Ragadh., “How to Read and Interpret FTIR Spectroscope of Organic Material,” Journal of Science Technology, 4(1), 97-118(2019).
25. Pallarés, J., González-Cencerrado, A. and Arauzo, I., “Production and Characterization of Activated Carbon from Barley Straw by Physical Activation with Carbon Dioxide and Steam,” Biomass Bioenergy, 115, 64-73(2018).
26. Xinkai, L., Wang, Y., Zhang, G., Sun, W., Bai, Y., Zheng, L., Han, X. and Wu, L. E., “Influence of Mg-Promoted Ni-Based Catalyst Supported on Coconut Shell Carbon for CO2 Methanation,” Chemistry Select, 4(3), 838-845(2019).
27. Hong, Z., Zhong, F., Niu, W., Zhang, K., Su, J., Liu, J., Li, L. and Wu, F., “Effects of Temperature and Particle Size on the Compositions, Energy Conversions, and Structural Characteris- tics of Pyrolysis Products from Different Crop Residues,” Energy, 190, 116413(2020).
28. Lin, F., Liu, X., Ma, M., Qi, F., Pan, Y., Wang, L., Ma, P. and Zhang, Y., “Real-Time Monitoring the Carbonization and Acti- vation Process of Activated Carbon Prepared from Chinese Parasol via Zinc Chloride Activation,” J. Anal. Appl. Pyrol., 155, 105089(2021).
29. Park, J. H., Ok, Y. S., Kim, S. H., Cho, J. S., Heo, J. S., Delaune, R. D. and Seo, D. C., “Evaluation of Phosphorus Adsorption Capacity of Sesame Straw Biochar on Aqueous Solution: Influ- ence of Activation Methods and Pyrolysis Temperatures,” Envi- ron. Geochem. Health, 37(6), 969-983(2015).
30. Towfik, A. Saleh, “Simultaneous Adsorptive Desulfurization of Diesel Fuel over Bimetallic Nanoparticles Loaded on Activated Carbon,” J. Clean. Prod., 172, 2123-2132(2018).
31. Wang, X., Li, C., Li, Z., Yu, G. and Wang, Y., “Effect of Pyrol- ysis Temperature on Characteristics, Chemical Speciation, and Risk Evaluation of Heavy Metals in Biochar Derived from Tex- tile Dyeing Sludge,” Ecotoxicol. Environ. Saf., 168, 45-52(2019).
32. Dehkhoda, A. M., Ellis, N. and Gyenge, E., “Effect of Activated Biochar Porous Structure on the Capacitive Deionization of NaCl and ZnCl2 Solutions,” Microporous Mesoporous Mater., 224, 217-228(2016).
33. Wang, H., Xie, R., Zhang, J. and Zhao, J., “Preparation and Characteri- zation of Distillers’ Grain-Based Activated Carbon as a Low-Cost Methylene Blue Adsorbent: Mass Transfer and Equilibrium Modeling,” Adv. Powder. Technol., 29(1), 27-35(2018).
34. Wang, J., Wang, R., Ma, J. and Sun, Y., “Study on the Application of Shell-Activated Carbon for the Adsorption of Dyes and Anti- biotics,” Water, 14(22), 3752(2022).
35. Suárez-García, F., Martínez-Alonso, A. and Tascón, J. M. D., “A Comparative Study of the Thermal Decomposition of Apple Pulp in the Absence and Presence of Phosphoric Acid,” Polym Degrad Stab., 75, 375-383(2002).
36. Malbenia, J. M., Benettayeb, A., Belkacem, M., Ruvimbo Mitchel, C., Hadj Brahim, M., Benettayeb, I., Haddou, B., Al-Farraj, S., Alkahtane, A. A., Ghosh, S., Chia, C. H., Sillanpaa, M., Baigen- zhenov, O. and Hosseini-Bandegharaei, A., “An Overview on the Key Advantages and Limitations of Batch and Dynamic Modes of Biosorption of Metal Ions,” Chemosphere, 357(4), 142051(2024).
37. Fadel, A., Chebbi, R., Aidi, A. and Azri, N., “Kinetics and Isotherms Modeling of Methylene Blue Adsorption by Black Carbon Using the Shells of Apricot Kernels,” Indian J. Chem. Technolo., 28(4), 412-420(2021).

