Articles & Issues
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received October 21, 2025
Revised November 19, 2025
Accepted November 20, 2025
Available online December 23, 2025
-
This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits
unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
All issues
exo-THDCPD의 흡열 특성 향상 및 코크 저감을 위한 반응기 재질 및 첨가제 조합 최적화 연구
Study on the Optimization of Reactor Material and Additive Combinations for Enhanced Endothermic Characteristics and Coke Reduction of exo-THDCPD
https://doi.org/10.9713/kcer.2026.64.1.105146
Download PDF
Abstract
극초음속 비행체의 추진 시스템에서는 비행 중 발생하는 고열을 제어하기 위해 연료 기반 재생냉각 기술이 활용된다 . 그러나 액체 탄화수소 연료는 열분해 과정에서 코크가 형성되어 냉각 채널 막힘과 성능 저하를 유발한다 . 본 연구에서는 exo-tetrahydrodicyclopentadiene(exo-THDCPD) 연료를 대상으로 열분해에 많이 사용되는 스테인리스스틸 (SUS316), 인 코넬 (Inconel 600), 티타늄 (Grade 9) 반응기로 사용하였을 때 열분해 특성을 비교하였다 . 또한 분산제 (Dispersants), 산 화방지제 (Antioxidants, AO), 금속 비활성화제 (Metal Deactivator, MDA)를 첨가하여 반응기 재질별 흡열 특성 및 코크 저감 효과를 정량적으로 평가하였다 . 실험 결과 스테인리스 스틸 반응기 대비 인코넬 반응기의 흡열량이 약 10% 증가 하고 코크가 85% 감소되었으며 , 티타늄 반응기는 최대 7% 흡열량 증가와 72%의 코크 저감 효과를 보였다 . 첨가제를 함께 사용한 경우 첨가제를 사용하지 않은 경우에 비해 최대 97%의 코크 저감률과 14%의 흡열량 향상이 확인되었다 . 본 연구결과 반응기 재질의 물성이 연료 열분해 특성 및 코크 형성에 중요한 영향을 미치며 , 첨가제 전략과 함께 중요 하게 고려될 필요가 있음을 보여준다.
In hypersonic propulsion systems, regenerative cooling using hydrocarbon fuels is employed to manage the extreme thermal loads generated during flight. However, liquid hydrocarbon fuels undergo thermal cracking that leads to coke formation, resulting in channel blockage and performance degradation. In this study, the thermal cracking behavior of exo-THDCPD fuel was compared using stainless steel (SUS316), Inconel 600, and titanium (Grade 9) reactors, which are commonly used materials for thermal decomposition experiments. In addition, the effects of additives, dispersants, antioxidants, and metal deactivators, were quantitatively evaluated to investigate the endothermic characteristics and coke reduction performance depending on reactor material. The results showed that, compared with the stainless steel reactor, the Inconel reactor exhibited approximately a 10% increase in heat sink and an 85% reduction in coke formation, while the titanium reactor showed up to a 7% increase in heat sink and a 72% reduction in coke. When additives were applied, the coke reduction rate and heat sink increased by up to 97% and 14%, respectively, compared with the additive-free condition. These findings demonstrate that the physical properties of reactor materials significantly influence the thermal cracking behavior and coke formation of hydrocarbon fuels, emphasizing the need to consider reactor material selection in conjunction with additive optimization strategies.
References
2. Błachnio, J., “The Effect of High Temperature on the Degrada- tion of Heat-resistant and High-temperature Alloys,” Solid State Phenomena, 147, 744-751(2009).
3. Jiang, R., Liu, G. and Zhang, X., “Thermal Cracking of Hydrocar- bon Aviation Fuels in Regenerative Cooling Microchannels,” Energy Fuels, 27(5), 2563-2577(2013).
4. Petley, D. H. and Jones, S. C., “Thermal Management for a Mach 5 Cruise Aircraft Using Endothermic Fuel,” J. Aircr., 29(3), 384- 389(1992).
5. Volokhov, V. M., Toktaliev, P. D. and Martynenko, S. I., “Numeri- cal Simulation of the Conjugate Heat Transfer in the Cooling System of the cOmbustion Chambers of the Aviation Ramjet on the Endothermic Fuels,” 979-991(2016).
6. Spadaccini, L. J., Sobel, D. R. and Huang, H., “Deposit Formation and Mitigation in Aircraft Fuels,” J. Eng. Gas Turbines Power, 123(4), 741-746(2001).
7. Liu, G., Wang, X. and Zhang, X., “Pyrolytic Depositions of Hydro- carbon Aviation Fuels in Regenerative Cooling Channels,” J. Anal. Appl. Pyrolysis, 104, 384-395(2013).
8. Wang, B., Gong, X., Zhang, Z., Zhu, Q. and He, W., “Modelling and Understanding Deposit Formation of Hydrocarbon Fuels from the Coke Characteristics,” Fuel, 319, 123745(2022).
9. Li, H., Wang, Y., Wang, L., Zhang, X. and Liu, G., “Pyrolysis and Coke Deposition of JP-10 with Decalin in Regenerative Cooling Channels,” Energy Fuels, 36(12), 6096-6108(2022).
10. Reyniers, M. S. and Froment, G. F., “Influence of Metal Surface and Sulfur Addition on Coke Deposition in the Thermal Cracking of Hydrocarbons,” Ind. Eng. Chem. Res., 34(3), 773-785(1995).
11. Salari, D., Niaei, A., Towfighi, J., Panahi, P. and Nabavi, R., “Investigation of Coke Deposition and Coke Inhibition by Orga- nosul-fur Compounds in the Pyrolysis of Naphtha in the Get Stirred Reactor System,” Iranian Journal of Chemical Engineering (IJChE), 3(1), 40-51(2006).
12. Altin, O. and Eser, S., “Analysis of Solid Deposits from Thermal Stressing of a JP-8 Fuel on Different Tube Surfaces in a Flow Reactor,” Ind. Eng. Chem. Res., 40(2), 596-603(2001).
13. Li, Q., Pan, M. and Dong, Y., “Turbulence Modulation and Heat Transfer Enhancement in Channels Roughened by Cube-covered Surface,” Comput. Fluids, 165, 33-42(2018).
14. Xin, Y., Zhang, L., Li, Z., Jing, T., Sun, X. and Qin, F., “Heat transfer Characteristics of Endothermic Hydrocarbon Fuel in C/SiC Composites Cooling Channels,” 6-11(2023).
15. Tang, S., Luo, X., Cai, C., Wang, J. and Tang, A., “Relationship Between Coking Behavior in Hydrocarbon Fuel Pyrolysis and Surface Roughness,” Energy Fuels, 32(2), 1223-1229(2018).
16. Towfighi, J., Sadrameli, M. and Niaei, A., “Coke Formation Mecha- nisms and Coke Inhibiting Methods in Pyrolysis Furnaces,” J. Chem. Eng. Japan, 35(10), 923-937(2002).
17. Miyamoto, N., Hou, Z., Harada, A., Ogawa, H. and Murayama, T., “Characteristics of Diesel Soot Suppression with Soluble Fuel Additives,” SAE Transactions, 792-798(1987).
18. Altin, O. and Eser, S., “Carbon Deposit Formation from Thermal Stressing of Petroleum Fuels,” Prepr. Pap. -Am. Chem. Soc., Div. Fuel Chem, 49(2), 764-766(2004).
19. Osawa, Z., “Role of Metals and Metal-deactivators in Polymer Degradation,” Polym. Degrad. Stab., 20(3-4), 203-236(1988).
20. Wickham, D., Alptekin, G., Engel, J. and Karpuk, M., “Additives to Reduce Coking in Endothermic Heat Exchangers,” 2215(1999).
21. Arondel, M., Dequenne, B. and Rodeschini, H., “Additive Com- positions that Improve the Lacquering Resistance of Superior Diesel or Biodiesel Fuels,” France Patent, (2013).
22. Rawson, P. and Stansfield, C., “Field Method for Detection of Metal Deactivator Additive in Jet Fuel,” Field Method for Detec- tion of Metal Deactivator Additive in Jet Fuel, (2009).
23. Olugbade, T. O., “Corrosion Resistance, Evaluation Methods, and Surface Treatments of Stainless steels,” (2022).
24. Buscail, H., Perrier, S. and Josse, C., “Oxidation Mechanism of the Inconel 601 Alloy at High Temperatures,” Materials and Corrosion, 62(5), 416-422(2011).
25. Veiga, C., Davim, J. P. and Loureiro, A., “Properties and Appli- cations of Titanium Alloys: A Brief Review,” Rev. Adv. Mater. Sci, 32(2), 133-148(2012).
26. Huang, X., Xiao, K., Fang, X., Xiong, Z., Wei, L., Zhu, P. and Li, X., “Oxidation Behavior of 316L Austenitic Stainless Steel in High Temperature Air With Long-term Exposure,” Materials Research Express, 7(6), 066517(2020).
27. Vijey, T. A. and Surianarayanan, V., “Studies on Oxidation Behav- ior of Nickel Based Super Alloy (inconel 600),”.
28. Unnam, J., Shenoy, R. N. and Clark, R. K., “Oxidation of Com- mercial Purity Titanium,” Oxidation Metals, 26(3), 231-252(1986).
29. Jonsson, T., Karlsson, S., Hooshyar, H., Sattari, M., Liske, J., Svensson, J. and Johansson, L., “Oxidation After Breakdown of the Chromium-rich Scale on Stainless Steels at High Temperature: Internal Oxidation,” Oxidation Metals, 85(5), 509-536(2016).
30. Li, D., Chen, G., Li, D., Zheng, Q., Gao, P. and Zhang, L., “Oxida- tion Resistance of Nickel-based Superalloy Inconel 600 in Air at Different Temperatures,” Rare Metals, 40(11), 3235-3240(2021).
31. Song, H., Lee, H., Lee, J., Moon, W., Lee, W. and Park, Y., “Char- acteristics and Oxidation Mechanism of Thermal Oxide on ti-xCr and ti-xV (x=5, 10, 15) Alloys,” J. Alloys Compounds, 815, 152390 (2020).

