Articles & Issues
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received August 7, 2025
Revised September 29, 2025
Accepted October 13, 2025
Available online November 24, 2025
-
This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits
unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
All issues
금 나노입자의 광열 효과를 이용한 인공수정체의 후낭 혼탁 억제
Inhibition of Posterior Capsule Opacification on Intraocular Lens Using Photothermal Effect of Gold Nanoparticles
https://doi.org/kcer.2026.64.1.105141
Abstract
후낭 혼탁(posterior capsule opacification, PCO)은 백내장 수술 후 흔히 발생하는 합병증으로, 인공수정체
(intraocular lens, IOL) 수술 후에 잔존하는 수정체 상피세포(lens epithelial cell, LEC)가 IOL 표면에 부착 및 증
식됨에 의해 유발된다. 본 연구에서는 근적외선(near-infrared, NIR) 조사 하에서 열을 발생시킬 수 있는 금 나노입
자를 IOL 표면 위에 도포하여, 광열 효과에 의해 IOL 표면 위에 부착 및 증식되는 LEC를 사멸시킴에 의해 IOL
표면에서 발생되는 PCO의 억제 가능성을 살펴보았다. 금 나노입자는 전구체인 HAuCl4를 sodium borohydride로
환원시켜 제조하였으며, 제조된 금 나노입자는 소수성 아크릴 IOL 표면에 도포되었다. 광열 특성은 808 nm 파장
의 NIR 레이저 조사 하에서 평가되었는데 여러 조성 중에서 특히 HAuCl4 농도 50 mM, dopamine 농도 9.0 mM
조건에서 합성된 금 나노입자로 도포된 IOL은 36 oC의 온도 증가를 보여 가장 우수한 광열 효과를 보였다. 또한
금 나노입자가 도포된 IOL은 2%의 세포 독성을 보여 생체적합성이 우수하였다. 이상의 결과는 본 연구를 통해 합
성된 금 나노입자가 IOL 위에 도포될 때 광열 효과에 의해 LEC를 사멸시킬 수 있으므로 IOL 표면에서의 PCO 발
생 억제 가능성을 보여주었다.
Posterior capsule opacification (PCO) is a common complication after cataract surgery, and is caused by
the attachment and proliferation of lens epithelial cell (LEC) that remains after intraocular lens (IOL) surgery. In this
study, we examined the possibility of inhibiting PCO on the IOL surface by applying Au nanoparticle (AuNP) that can
generate heat under near-infrared (NIR) irradiation on the IOL surface to kill the LEC that adheres and proliferates on the
IOL surface by photothermal effect. AuNP was prepared by reducing the precursor HAuCl4 with sodium borohydride, and the
prepared AuNP was applied to the surface of hydrophobic acrylic IOL. The photothermal properties were evaluated under
NIR laser irradiation at a wavelength of 808 nm. Among the various compositions, the IOL coated with the AuNP
synthesized under conditions of 50 mM HAuCl4 concentration and 9.0 mM dopamine concentration showed the best
photothermal effect, with a temperature increase of 36 oC. In addition, IOL to which AuNP was applied showed cytotoxicity
of 2% and was excellent in biocompatibility. The above results show that the AuNP synthesized in this study can kill LEC
by the photothermal effect when applied on the IOL, thereby exhibiting the possibility of suppressing PCO generation on
the IOL surface.
References
Acrylic Monomers in Reducing Glistenings of Hydrophobic
Acrylic Intraocular Lenses,” Opt. Mater., 119, 111401(2021).
2. Choi, H. J. and Jin, G. H., “A Study on the Causes of Senile Cataract
and the Effect of Sugar on Cataract Development,” J. Korean
Ophthalmic Opt. Soc., 1(2), 1-6(1996).
3. Park, H. S., Kim, Y. M. and Yang, J. Y., “Two Cases of Intraoperative
Acute Opacification of Hydrophilic Intraocular Lens,” J.
Korean Ophthalmol. Soc., 59(10), 974-977(2018).
4. Pagnoulle, C., Bozukova, D., Gobin, L., Bertrand, V., and Pauw,
M. G., “Assessment of New-Generation Glistening-Free Hydrophobic
Acrylic Intraocular Lens Material,” J. Cataract Refract.
Surg., 38, 1271-1277(2012).
5. Pusnik, A., Petrovski, G. and Lumi, X., “Dysphotopsias or Unwanted
Visual Phenomena after Cataract Surgery,” Life, 13, 53-65(2023).
6. Kim, T. H., Moon, J. H., Han, S. Y. and Song, K. C., “Zwitterionic
Sulfobetaine Methacrylate (SBMA) Coating on Hydrophobic
Acrylic Intraocular Lens Material to Prevent the Adhesion of
Lens Epithelial Cells: Effect of SBMA Concentration,” Thin
Solid Films, 801, 140422(2024).
7. Schaumberg, D. A., Dana, M. R., Christen, W. G. and Glynn, R.
J., “A Systematic Overview of the Incidence of Posterior Capsule
Opacification,” Ophthalmology, 105(7), 1213-1221(1998).
8. Mencucci, R., Favuzza, E., Boccalini, C., Gicquel, J. J. and Raimondi,
L., “Square-Edge Intraocular Lenses and Epithelial Lens
Cell Proliferation: Implications on Posterior Capsule Opacification
in an in Vitro Model,” BMC Ophthalmol., 15, 5-9(2015).
9. Kim, B., Yeo, D. G. and Na, H. B., “Research Trends in Photothermal
Therapy Using Gold Nanoparticles,” Appl. Chem. Eng.,
28(4), 383-396(2017).
10. Lee, J. Y., Kim, B. M., Park, S. H., Choi, Y. H., Shim, K. D., Moon,
S. B., Jang, E. S., Yang, S. A. and Jhee, K. H., “Development of
Thermo-Cosmotics Using Photothermal Effect of Gold Nanoparticles,”
J. Soc. Cosmet. Sci. Korea, 41(1), 27-34(2015).
11. Jaque, D., Maestro, L. M., del Rosal, B., Haro-Gonzalez, P.,
Benayas, A., Plaza, J. L., Rodríguez, E. M. and Solé, J. G., “Nanoparticles
for Photothermal Therapies,” Nanoscale, 6(16), 9494-9530
(2014).
12. Kim, T. H. and Song, K. C., “Effect of Photo-Initiation Polymerization
and Thermal-Initiation Polymerization on the Reduction
of Glistening in Hydrophobic Acrylic Intraocular Lens
Materials,” Macromol. Chem. Phys., 226(5), 2500063(2025).
13. Du, S., Luo, Y., Liao, Z., Zhang, W., Li, X., Liang, T., Zuo, F.
and Ding, K., “New Insights into the Formation Mechanism of
Gold Nanoparticles Using Dopamine as a Reducing Agent,” J.
Colloid Interface Sci., 523, 27-34(2018).
14. Liao, Z., Zhang, W., Qiao, Z., Luo, J., Ai Niwaer, A. E., Meng,
X., Wang, H., Li, X., Zuo, F. and Zhao, Z., “Dopamine-Assisted
One-Pot Synthesis of Gold Nanoworms and Their Application
as Photothermal Agents,” J. Colloid Interface Sci., 562, 81-90
(2020).
15. Tu, S., Ren, W., Han, J., Cui, H., Dai, T., Lu, H., Xie, Y., He, W.
and Wu, A., “Polydopamine Nanoparticle-Mediated Mild Photothermal
Therapy for Inhibiting Atherosclerotic Plaque Progression
by Regulating Lipid Metabolism of Foam Cells,” Regener. Biomater.,
10(2), rbad031(2023).
16. Szewczyk, J. Radhakrishnan, D. Łukasiewicz, Z. and Coy, E.
“Review on Polydopamine Supramolecular Ordering–Mechanism
Elucidation and Application in 2D Nanocomposites Fabrication,”
Eur. Polym. J., 221, 113530(2024).
17. Boudesocque, S., Mohamadou A. and Dupont L., “Efficient Extraction
of Gold from Water by Liquid-Liquid Extraction or Precipitation
Using Hydrophobic Ionic Liquids,” New J. Chem., 38(11),
5573-5581(2014).
18. Zhang, K., Zhu, X. and Lu, Y., “Effect of Mild Heating on Human
Lens Epithelial Cells,” Sci. Rep., 6, 33917(2016).
19. Yarmolenko, P. S., Moon, E. J., Landon, C., Manzoor, A., Hochman,
D. W., Viglianti, B. L. and Dewhirst, M. W., “Thresholds for
Thermal Damage to Normal Tissues: An Update,” Int. J. Hyperthermia,
27(4), 320-343(2011).
20. ISO, Biological evaluation of medical devices – Part 5: Tests for
in Vitro Cytotoxicity, ISO 10993-5, International Organization for
Standardization, Geneva (2009).

