Articles & Issues
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received July 21, 2025
Revised September 22, 2025
Accepted September 22, 2025
Available online October 1, 2025
- Acknowledgements
- 본 연구는 산림청의 “목재자원의 고부가가치 이용기술 개발 사 업”의 지원에 의하여 수행되고 있습니다(RS-2023-KF002481). 본 연구에서 bio-composites에서 방출되는 휘발성 유기화합물 측정에 도움을 준 서울대학교 농생명과학공동기기원 대기분석기기실의 연 구원 그리고 bio-composites의 제조 및 강도 측정에 도움을 준 대구 대학교 산림자원학과 학부생들에게 감사드립니다.
-
This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits
unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
All issues
Poly-lactic acid와 목분/수피분으로 제조한 bio-composites에서 계면결합제로서 단백질계 접착제가 강도 및 치수안정성에 미치는 영향
Effect of Proteinaceous Adhesives as an Interfacial Binder on the Mechanical Strength and Dimensional Stability of Bio-composites Fabricated with Poly-lactic Acid and Wood/wood Bark Flour
https://doi.org/10.9713/kcer.2025.63.4.105138
Download PDF
Abstract
본 연구는 poly-lactic acid(PLA)에 충전제로 radiata pine 목분(RDP), 활엽수 잡목 목분(MIX), 편백 수피(CYP-B),
치수안정화제로 피마자왁스(HCO), 계면결합제로 CYP-B, 단백질 함량이 약 40%를 차지하는 동애등에 분말(black
soldier fly, BSF) 그리고 BSF-기반 접착제(PAR)를 첨가하여 제조한 bio-composites의 휨강도, 수분흡수율(MAR), 길이
선열팽창계수(LCTE), 부피팽윤율(TVS)에 미치는 인자의 분석을 통하여 최적 제조 조건을 제시하고자 수행하였다. 사
출용 PLA(PLA-1)에 충전제로 RDP, MIX, CYP-B를 혼합하여 제조한 composites(PLA-1/RDP, MIX, CYP-B)의 휨강
도는 RDP 또는 CYP-B로 제조한 composites에서 높았다. 수분 흡착에 의한 치수 변화를 억제하기 위하여 치수안정화
제로 사용된 HCO의 적용량 증가(2.5 wt%에서 5wt%)는 PLA-1/CYP-B의 휨강도를 증가시켰다. PLA-1/RDP의 휨강
도는 CYP-B, PAR을 계면결합제로 적용하여 제조한 composites에서 높았으며, LCTE는 PAR로 제조한 compo sites에서
가장 낮았다. MAR는 PLA-1/RDP에서 계면결합제별 차이가 없었으나, PLA-1/MIX에서 목재-플라스틱 복합재(wood-plastic
composites, WPC) 생산에 있어 계면결합제로 사용되고 있는 maleic anhydride(MAA)보다 CYP-B가 효과적인 것으로
조사되었다. Composites 제조에 있어 PLA-1 및 충전제의 배합비와 상관없이 PLA-1/CYP-B의 휨강도, MAR, LCTE는
PLA-1/RDP 및 PLA-1/MIX보다 우수하였다. 특히 50 wt% PLA-1/40 wt% CYP-B에서 계면결합제로서 5 wt% PAR의 적
용으로 대부분의 물성은 개선되었다. 결과를 종합하면, 50 wt% PLA-1에 40 wt% CYP-B, 5 wt% HCO 그리고 5 wt%
PAR가 composites 제조를 위한 최적의 배합 조건으로 조사되었다. 이 조건으로 제조한 PLA-기반 composites는 국립
산림과학원에서 고시한 WPC의 폼알데하이드 방산량(<1.5 mg/L) 및 LCTE(<6.0×10-5/℃) 기준을 만족하였으며, 휨강
도 및 MAR는 5wt% MAA로 제조한 composites보다 우수하였다. 따라서 WPC 기준에서 요구되는 추가 항목에 대한
품질 기준을 만족할 경우 다양한 용도의 생분해성 플라스틱 소재로 활용이 가능할 것으로 기대된다. 또한 인체 및 환
경 유해성이 있는 고가의 합성 계면결합제인 MAA에 대한 무독성의 단백질-기반 계면결합제의 대체 가능성을 제시하
였으며, CYP-B를 composites 제조용 충전제로 활용함으로써 폐기물의 재자원화로 환경적인 측면에서 다양한 편익을
제공할 것으로 예상된다.
In this study, PLA-based bio-composites were fabricated with lignocellulosic filler (RDP, MIX or CYP-B),
hydrogenated castor wax (HCO) as a dimensional stabilizer and CYP-B, BSF, which contains about 40% protein, or
proteinaceous adhesive resin (PAR) formulated with hydrolyzates of BSF as an interfacial binder. The optimal fabricating
conditions were determined by investigating the impact of various factors on the bending strength, MAR, LCTE and TVS of
the bio-composites. Bending strength of each composite, fabricated with injection-grade PLA (PLA-1), with either RDP
or CYP-B was higher than that with PLA-1 and MIX. When the content of HCO, which was used to suppress dimensional
changes caused by a moisture absorption, increased from 2.5 wt% to 5 wt%, the bending strength of PLA-1/CYP-B
increased significantly. The highest bending strength and the lowest LCTE were found in the PLA-1/RDP fabricated
with CYP-B and PAR. MAR of the PLA-1/RDP was not affected by the type of interfacial binder, but CYP-B was found
to be more effective than MAA, which is extensively used in the production of WPC, in PLA-1/MIX. The bending
strength, MAR and LCTE of PLA-1/CYP-B on all weight ratios of PLA-1 to filler were superior to those of PLA-1/RDP
and PLA-1/MIX. Particularly, 50 wt% PLA-1/40 wt% CYP-B added with 5 wt% PAR showed higher performances than
those with any other weight ratio. Composites fabricated with 50 wt% PLA-1, 40 wt% CYP-B, 5 wt% HCO and 5 wt% PAR
met the LCTE (<6.0×10-5/℃) and formaldehyde emission (<1.5 mg/L) standards designated by the National Institute of
Forest Science (NIFOS), and exhibited higher bending strength and MAR than those with 5 wt% MAA. The composites
are expected to use as biodegradable plastic materials for various applications, satisfying other specifications in the
NIFOS’s WPC standard. In addition, this study demonstrated the feasibility of replacing MAA, which is both expensive
and poses human health and environmental risks, with a non-toxic PAR. Furthermore, the use of CYP-B as a filler in the
production of bio-composites enables waste recycling and is expected to provide a wide range of environmental benefits.
Keywords
References
“Characteristics of Plastic Pollution in the Environment: A
Review,” Bull. Environ. Contam. Toxicol., 107, 577-584(2020).
2. Pilla, S., Gong, S. Q., O'Neill, E., Rowell, R. M., Krzysik, A.
M., “Polylactide-pine Wood Flour Composites,” Polym. Engin.
Sci., 48, 578-587(2008).
3. You, Y., Oh, Y., Hong, S. and Choi, S., “International Trends in
Development, Commercialization and Market of Bio-Plastics,”
J. Clean Energy Technol., 21(3), 141-152.
4. Mathew, A. P., Oksman, K., Sain, M., “Mechanical Properties of
Biodegradable Composites from Polylactic acid (PLA) and Microcrystalline
Cellulose (MCC),” J. Appl. Polym. Sci., 97, 2014-2025
(2005).
5. Suryanegara, L., Nakagaito, A. N. and Yano, H., “The Effect of
Crystallization of PLA on the Thermal and Mechanical Properties
of Microfibrillated Cellulose-reinforced PLA Composites,” Compos.
Sci. Technol., 69(7-8), 1187-1192(2009).
6. Cho, Y. B. and Cho, D., “Water Treatment Effect of Bamboo Fiber
on the Mechanical Properties, Impact Strength, and Heat Deflection
Temperature of Bamboo Fiber/PLA Biocomposites,” J. Adhesion
and Interface, 17(3), 96-103(2016).
7. Vink, E.T.H, S. Davies, S. and Kolstad, J. J., “The Eco-profile
for Current Ingeo® Polylactide Production,” Ind. Biotechnol., 6,
212-224(2010).
8. Trivedi, A. K., Gupta, M. K. and Singh, H., “PLA Based Bio
composites for Sustainable Products: A Review,” Adv. Ind. Eng.
Polym. Res., 6(4), 382-395(2023).
9. Kim, B. J., “Overview of Wood Plastic Composites: Focusing
on Use of Bio-based Plastics and Co-extrusion Technique,” J.
Kor. Wood Sci. Technol., 42(5), 499-509(2014).
10. Gerogiopoulos, P. and Kontou, E., “The Effect of Wood-fiber Type
on the Thermomechanical Performance of a Biodegradable Polymer
Matrix,” J. Appl. Polym. Sci., 132(27), 42185(2015).
11. Jubinville, D., Tzoganakis, C. and Mekonnen, T. H., “Recycled
PLA – Wood Flour Based Biocomposites: Effect of Wood Flour
Surface Modification, PLA Recycling, and Aaleation,” Constr. Build.
Mater., 352, 129026(2022).
12. Taktak, I., Mansouri, A., Souissi, S., Etoh, M. and Elloumi, A.,
“Biocomposites Films Based on Polylactic Acid and Olive Wood-
Flour: Investigation on Physical, Thermal and Mechanical Properties,”
J. Elastomers Plast., 55(4), 597-612(2023).
13. Lendvai, L., Omastova, M., Patnaik, A., Dogossy, G. and Singh,
T., “Valorization of Waste Wood Flour and Rice Husk in Poly(Lactic
Acid)-Based Hybrid Biocomposites,” J. Polym. Environ., 31,
541551 (2023).
14. Tao, Y., Wang, H., Li, Z., Li, P. and Shi, S. Q., “Development
and Application of Wood Flour-filled Polylactic Acid Composite
Filament for 3D Printing,” Mater. Basel, 10, 339(2017).
15. Kariz, M., Sernek, M., Obućina, M. and Kuzman, M. K., “Effect
of Wood Content in FDM Filament on Properties of 3D Printed
Parts,” Mater. Today Commun., 14, 135-140(2018),
16. Safin, R. R., Talipova, G. A. and Galyavetdinov, N. R., “Design
of Packaging Materials Based on Polylactide and Wood Filler,”
Int. J. Eng. Technol., 7, 1089-1091(2018).
17. Zhao, X., Tekinalp, H., Meng, X., Ker, D., Benson, B., Pu, Y.,
Ragauskas, A. J., Wang, Y., Li, K., Webb, E., Gardner, D. J., Anderson,
J. and Ozcan, S., “Poplar as Biofiber Reinforcement in Composites
for Large-Scale 3D Printing,” ACS Appl. Bio Mater., 2, 4557-
4570(2019).
18. Gupta, A., Singh, G., Ghosh, P., Arora, K. and Sharma, S.,
“Development of Biodegradable Tableware from Novel Combination
of Paddy Straw and Pine Needles: A Potential Alternative against
Plastic Cutlery,” J. Environ. Chem. Eng., 11(6), 111310(2023).
19. Mohammadsalih, Z. G., Muawwidzah, M., Siddiqui, V. U. and
Sapuan, S. M., “Mechanical Properties of Wood Fibre Filled
Polylactic Acid (PLA) Composites Using Additive Manufacturing
Techniques,” J. Nat. Fibers Polym. Compos., 2(2), 3(2023).
20. Balasuriya, P. W., Ye, L. and Mai, Y. W., “Mechanical Properties of
Wood Flake-polyethylene Composites. Part I: Effects of Processing
Methods and Matrix Melt Flow Behaviour,” Compos.
Part A-Appl. S., 32, 619-629(2001).
21. Huang, H. and Zhang, J., “Effects of Filler-filler and Polymer-filler
Interactions on Rheological and Mechanical Properties of HDPEwood
Composites,” J. Appl. Polym. Sci., 111, 2806-2812(2009).
22. Du, J., Wang, Y., Xie, X., Xu, M. and Song, Y., “Styrene-Assisted
Maleic Anhydride Grafted Poly(lactic acid) as an Effective Compatibilizer
for Wood Flour/Poly(lactic acid) Bio-Composites,” Polymers,
9(11), 623(2017).
23. Pandey, K., Antil, R., Saha, S., Jacob, J. and Balavairavan, B.,
“Poly(lactic acid)/thermoplastic Polyurethane/wood Flour Composites:
Evaluation of Morphology, Thermal, Mechanical and Biodegradation
Properties,” Mater. Res. Express, 6, 125306(2019).
24. Ermeydan, M. A., Aykanat, O. and Altın, Y., “Preparation and
Characterization of Hybrid PLA Biocomposites Reinforced by
Wood and Silane Treated Basalt Fibers or Compatibilized by
Maleic Anhydride-grafted Polypropylene (MAPP),” Polym. Compos.,
45(11), 9831-9844(2024).
25. Hejna, A., Przybysz-Romatowska, M., Kosmela, P., Zedler, L.,
Jerzy Korol, J. and Krzysztof Formela, K., “Recent Advances in
Compatibilization Strategies of Wood-polymer Composites by
Isocyanates,” Wood Science and Technology, 54, 1091-1119(2020).
26. Faludi, G., Dora, G., Renner, K., Móczó, J. and Pukánszky, B.,
“Improving Interfacial Adhesion in PLA/wood Biocomposites,”
Compos. Sci. Technol., 89, 77-82(2013).
27. Lee, S. and Wang, S., “Biodegradable Polymers/bamboo Fiber
Biocomposite with Bio-based Coupling Agent,” Composites Part
A: Appl. Sci. Manuf., 37(1), 80-91(2006).
28. Lazzeri, D., Pieri, M., Lazzeri, S., Colizzi, L., Giannotti, G., Pagnini,
D., Stabile, M., Gatti, G. L. and Massei, A., “Silane Coupling Agent
Chemical Burns: A Risk for Medical Personnel Too,” Burns,
35(4), 600-605(2009).
29. Li, X., Chen, Y., Gao, W., Mo, A., Zhang, Y., Jiang, J. and He, D.,
“Prominent Toxicity of Isocyanates and Maleic Anhydrides to
Caenorhabditis elegans: Multilevel Assay for Typical Organic
Additives of Biodegradable Plastics,” J. Hazard. Mater., 442, 130051
(2023).
30. Pawlak, M., Pobłocki, K., Drzeżdżon, J., Gawdzik, B., and Jacewicz,
D., “Isocyanates and Isocyanides - Life-threatening Toxins or
Essential Compounds?,” Sci. Total Environ., 934, 173250(2024).
31. Lu, J. Z., Wu, Q. and McNabb, Jr., H. S., “Chemical Coupling in
Wood Fiber and Polymer Composites: A Review of Coupling
Agents and Treatments,” Wood Fiber Sci., 32(1), 88-104(2000).
32. Rao, J., Zhou, Y. and Fan, M., “Revealing the Interface Structure
and Bonding Mechanism of Coupling Agent Treated WPC,”
Polymers, 10(3), 266(2018).
33. Poletto, M., “Natural Oils as Coupling Agents in Recycled Polypropylene
Wood Flour Composites: Mechanical, Thermal and
Morphological Properties,” Polym. Polym. Compos., 28(7), 443-
450(2020).
34. Marin, D., Chiarello, L. M., Gruber, G. K., de Oliveira, A. D.,
Reichert, A. A., Vieira, K. P., Ender, L., Wiggers, V. R. and Botton,
V., “Influence of the Use of Renewable Compatibility Agent Wood
Plastic Composite (WPC),” J. Res. Updates Polym. Sci., 11, 25-
30(2022).
35. Younesi-Kordkheili, H. and Pizzi, A., “Nanolignin, a Coupling
Bio-Agent for Wood-Plastic Composites,” J. Renew. Mater., 11(5),
2075-2083(2023).
36. Younesi-Kordkheili, H., Pizzi, A. and Chenaghchi, F., “Modified
Lignin by Deep Eutectic Solvent as a Novel Coupling Agent for
Wood-plastic Composites,” J. Mol. Liq., 413, 125959(2024).
37. Zhu, J., Xue, L., Wei, W., Mu, C., Jiang, M. and Zhou, Z., “Modification
of Lignin with Silane Coupling Agent to Improve the Interface
of Poly(L-lactic) acid/lignin Composites,” Bioresources, 10,
4315-4325(2015).
38. Johansson, M., Skrifvars, M., Kadi, N. and Dhakal, H. N., “Lignin-
polylactic Acid Biopolymer Blends for Advanced Applications –
Effect of Impact Modifier,” Compos. Part C: Open Access, 14,
100502(2024).
39. Lv, S., Liu, X., Gu, J., Jiang, Y., Tan, H. and Zhang, Y., “Effect
of Glycerol Introduced into PLA-based Composites on the UV
Weathering Behavior,” Constr. Build. Mater., 144, 525-531(2017).
40. Petchwattana, N., Sanetuntikul, J. and Narupai, B., “Plasticization
of Biodegradable Poly(lactic acid) by Different Triglyceride Molecular
Sizes: A Comparative Study with Glycerol,” J. Polym. Environ.,
26, 1160-1168(2018).
41. Chen, T., Wu, Y., Qiu, J., Fei, M., Qiu, R. and Liu, W., “Interfacial
Compatibilization via In-situ Polymerization of Epoxidized Soybean
Oil for Bamboo Fibers Reinforced Poly (lactic acid) Biocomposites,”
Compos. Part A, 138, 106066(2020).
42. Han, Y., Shi, J., Mao, L., Wang, Z. and Zhang, L., “Improvement of
Compatibility and Mechanical Performances of PLA/PBAT Composites
with Epoxidized Soybean Oil as Compatibilizer,” Ind.
Eng. Chem. Res., 59(50), 21779-21790(2020).
43. Zhang, Y., Li, Y., Wang, L., Gao, Z. and Kessler, M. R., “Synthesis
and Characterization of Methacrylated Eugenol as a Sustainable
Reactive Diluent for a Maleinated Acrylated Epoxidized
Soybean Oil Resin,” ACS Sustain. Chem. Eng., 5, 8876-8883(2017).
44. Wang, Y. and Shelomi, M., “Review of Black Soldier Fly (Hermetia
illucens) as Animal Feed and Human Food,” Foods, 6(10),
91(2017).
45. Yang, I., Lee, K. U., Choi, S., Lee, Y., Kwon, O., Choi, W.,
Choi, J. W. and Oh, S. C., “Effect of Cypress Wood Bark and
Hydrogenated Castor Oil Used as an Additive on the Strengths
and Dimensional Stability of Bio-composites Fabricated with
Poly-lactic Acid and Wood Powder,” Korean Chem. Eng. Res.,
63(2), 105111(2025).
46. Spranghers, T., Ottoboni, M., Klootwijk, C., Ovyn, A., Deboosere,
S., De Meulenaer, B., Michiels, J., Eeckhout, M., De Clercq,
P. and De Smet, S., “Nutritional Composition of Black Soldier
Fly (Hermetia illucens) Prepupae Reared on Different Organic
Waste Substrates,” J. Sci. Food Agric., 97(8), 2594-2600(2017).
47. Yang, I., Han, G., Ahn, S. H., Choi, I ., Kim, Y. and Oh, S. C.,
“Adhesive Properties of Medium-density Fiberboards Fabricated
with Rapeseed Flour-based Adhesive Resins,” J. Adhes., 90, 279-
295(2014).
48. Yang, I., Park, D. H., Choi, W., Ahn, D. U., Oh, S. C. and Han,
G., “Adhesive and Curing Properties of Chicken Feather/bloodbased
Adhesives for the Fabrication of Medium-density Fiberboards,”
J. Adhes., 94(7), 1-18(2018).
49. American Society for Testing and Materials, Standard Test Methods
for Flexural Properties of Unreinforced and Reinforced Plastics
and Electrical Insulating Materials, ASTM International, West
Conshohocken, ASTM D790-17(2017).
50. National Institute of Forest Science, Standard and Specification
of Wood Products – Wood Plastic composite. NIFOS, Seoul, NIFOS
2024-1(2024).
51. Korean Agency for Technology and Standards, Measurement of
formaldehyde and volatile organic compounds emitted from building
interior materials. KSC, Eumseong, KS M 1998(2021).
52. Pérez, E., Famá, L., Pardo, S. G., Abad, M. J. and Bernal, C.,
“Tensile and Fracture Behaviour of PP/wood Flour Composites,”
Compos. Part B: Engr., 43(7), 2795-2800(2012).
53. Zozo, B., Mshayisa, V. V., Wicht, M. M. and van Wyk, J., “Structural
Properties of Black Soldier Fly Larvae Protein Concentrates
Extracted via Salting-in and Salting-out Coupled with Ultrafiltration,”
Appl. Food Res., 5(1), 100798(2025).
54. He, L., Song, F., Qi, L., Zhao, X., Wang, X. and Wang, U., “Development
of Polylactic Acid-based Materials with Highly and Balanced
Mechanical Performances Via Incorporating a Furan Ring-containing
Unsaturated Copolyester,” Compos. Commun., 23, 100543(2021).
55. Murayama, K., Ueno, T., Kobori, H., Kojima, Y., Suzuki, S., Aoki,
K., Ito, H., Ogoe, S. and Okamoto, M., “Mechanical Properties
of Wood/plastic Composites Formed Using Wood Flour Produced
by Wet Ball-milling under Various Milling Times and Drying Methods,”
J. Wood Sci., 65, 5(2019).
56. Kain, G., Lienbacher, B., Barbu, M., Senck, S. and Petutschnigg,
A., “Water Vapour Diffusion Resistance of Larch (Larix decidua)
Bark Insulation Panels and Application Considerations Based on
Numeric Modelling,” Constr. Build. Mater., 164, 308-316(2018).

