ISSN: 0304-128X ISSN: 2233-9558
Copyright © 2025 KICHE. All rights reserved

Articles & Issues

Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received July 9, 2025
Revised July 31, 2025
Accepted August 11, 2025
Available online September 29, 2025
Acknowledgements
이 논문은 현대차 그룹의 지원을 받아 수행된 연구임(20212010200090).
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

디에틸렌트리아민과 2-에톡시에탄올을 포함한 저수계 상분리 흡수제의 CO2 포집 특성

Phase Separation and CO2 Capture Performance of Water-lean Diethylenetriamine/2-ethoxyethanol Biphasic Solvents

한국교통대학교 화공생물공학과 1현대자동차그룹 그린에너지소재연구팀
1
hongyk@ut.ac.kr
Korean Chemical Engineering Research, November 2025, 63(4), 105134
https://doi.org/10.9713/kcer.2025.63.4.105134
downloadDownload PDF

Abstract

본 연구에서는 이산화탄소(CO2)의 습식 포집 공정에서 흡수제 재생에 필요한 에너지 저감을 목표로 물 함량을 줄

인 저수계 상분리 흡수제를 개발하였다. 흡수제를 구성하는 주 흡수제로는 1차 및 2차 아민기를 모두 포함한 디에틸

렌트리아민(diethylenetriamine, DETA)을 사용했으며 물을 대체하고 상분리를 유도하는 유기용매로는 2-에톡시에탄

올(2-ethoxyethanol, 2-EE)을 도입하였다. 다양한 DETA 농도(1.5-2.5M)와 2-EE 함량(30-60 wt%)에 대해 CO2 흡수

에 따른 흡수제의 상분리 특성, CO2 흡수 용량 및 순환 용량을 평가하였다. CO2와 DETA와의 반응을 통해 형성된

탄산염은 물에 대한 용해도가 높지만 2-EE에 대해서는 용해도가 낮아, 결과적으로 CO2 농축상과 희박상으로 상분리

가 유도된다. 상분리에 따른 CO2 농축율과 흡수제의 점도를 고려했을 때 최적의 흡수제 조성은 1.5M DETA와 50

wt% 2-EE로 확인되었으며 이때 CO2 농축상에서의 CO2 흡수 용량은 321 gCO2/Lsolvent, 순환 흡수 용량은 142

gCO2/Lsolvent였다. 이는 기존의 30 wt% 모노에탄올아민 수용액 대비 각각 약 3배, 2배 이상 우수한 성능을 나타낸

다. 13C NMR 분석을 통해 CO2 흡수 생성물로 카바메이트, 바이카보네이트 및 양성자화 아민이 형성됨을 확인하였

으며 이들 종의 물과 2-EE 간 용해도 차이가 상분리의 주요 요인인 것으로 나타났다. 본 연구에서 개발한 흡수제는

상분리 기반의 높은 CO2 농축 및 재생 효율을 통해 저에너지 CO2 포집 공정에 효과적으로 적용할 수 있는 가능성

을 제시한다.

In this study, a water-lean biphasic solvent system was developed to reduce the energy demand for solvent

regeneration in post-combustion CO2 capture processes. Diethylenetriamine (DETA), a polyamine containing both

primary and secondary amine groups, was used as the primary absorbent, while 2-ethoxyethanol (2-EE), and ether-based

alcohol, was introduced as an organic solvent to replace water and induce phase splitting. The effect of varying DETA

concentrations (1.5~2.5 M) and 2-EE contents (30~60 wt%) on the phase separation behavior, CO2 loading, and cyclic

capacity were systematically evaluated. The carbamate species generated from CO2-DETA reaction showed high

solubility in water but poor solubility in 2-EE, thereby inducing phase splitting into a CO2-rich lower phase and a CO2-

lean upper phase. Considering both CO2 enrichment and manageable viscosity, the optimal solvent composition was

identified as 1.5M DETA with 50 wt% 2-EE. Under this condition, the CO2 loading in the rich phase reached 321 gCO2/

Lsolvent and the cyclic loading was 142 gCO2/Lsolvent, which are approximately three and two times higher, respectively,

than those of conventional 30 wt% monoethanolamine (MEA) aqueous solutions. 13C NMR analysis confirmed the

formation of carbamate, bicarbonate, and protonated amine species and their differential solubility in water and 2-EE

was found to be the primary cause of phase separation. The developed biphasic solvent demonstrates potential for application

in energy-efficient CO2 capture, offering both enhanced CO2 enrichment and improved regeneration performance via

liquid-liquid phase separation.

References

1. Soo, X. Y. D., Lee, J. J. C., Wu, W. Y., Tao, L., Wang, C., Zhu,
Q. and Bu, J., “Advancements in CO2 Capture by Absorption
and Adsorption: A Comprehensive Review,” J. CO2 Util., 81,
102727(2024).
2. Rubin, E. S., Mantripragada, H., Marks, A., Versteeg, P. and Kitchin,
J., “The Outlook for Improved Carbon Capture Technology,”
Prog. Energy Combust. Sci., 38, 630-671(2012).
3. Li, X., Wang, S. and Chen, C., “Experimental and Rate-based
Modeling Study of CO2 Capture by Aqueous Monoethanolamine,”
Greenhouse Gases Sci. Technol., 4, 495-508(2014).
4. Lee, J., Hong, Y. K. and You, J. K., “Phase Separation Characteristics
in Biphasic Solvents based on Mutually Miscible Amines
for Energy Efficient CO2 Capture,” Korean J. Chem. Eng. 34,
1840-1845(2017).
5. Liu, F., Shen, Y., Shen, L., Zhang, Y., Chen, W., Wang, W., Li,
S., Zhang, S. and Li, W., “Sustainable Ionic Liquid Organic
Solution with Efficient Recyclability and Low Regeneration Energy
Consumption for CO2 Capture,” Sep. Purif. Technol., 275, 119123
(2021).
6. Lail, M., Tanthana, J. and Coleman, L., “Non-Aqueous Solvent
(NAS) CO2 Capture Process,” Energy Procedia, 63, 580-
594(2014).
7. Hu, H., Fang, M., Liu, F., Wang, T., Xia, Z., Zhang, W., Ge, C.
and Yuan, J., “Novel Alkanolamine-based Biphasic Solvent for
CO2 Capture with Low Energy Consumption and Phase Change
Mechanism Analysis,” Appl. Energy, 324, 119570(2022).
8. Papadopoulos, I., Tzirakis, F., Tsivintzelis, I. and Seferlis, P.,
“Phase-Change Solvents and Processes for Postcombustion CO2
Capture: A Detailed Review,” Ind. Eng. Chem. Res., 58, 4088-5111
(2019).
9. Zhang, J., Qiao, Y., Wang, W., Misch, R., Hussain, K. and Agar,
D. W., “Development of an Energy-efficient CO2 Capture Process
Using Thermomorphic Biphasic Solvents,” Energy Procedia, 37,
1254-1261(2013).
10. Raynal, L., Alix, P., Bouillon, P.-A., Gomez, A., de Nailly, M. L.
F., Jacquin, M., Kittel, J., di Lella, A., Mougin, P. and Trapy, J.,
“The DMX™ Process: An Original Solution for Lowering the
Cost of Post-combustion Carbon Capture, Energy Procedia, 4,
779-786(2011).
11. Zhang, G., Liu, J., Qian, J., Zhang, X. and Liu, Z., “Review of
Research Progress and Stability Studies of Amine-based Biphasic
Absorbents for CO2 Capture, J. Ind. Eng. Chem., 134, 28-50
(2024).
12. Zhou, X., Liu, F., Lv, B., Zhou, Z. and Jing, G., “Evaluation of
the Novel Biphasic Solvents for CO2 Capture: Performance and
Mechanism,” Int. J. Greenh. Gas Control, 60 120-128(2017).
13. An, S., Huang, X., Li, N., Li, Q., Wang, R., Qi, T. and Wang, L.,
“Comprehensive Performance of a Diethylenetriamine/2-Diethylaminoethanol
Biphasic Absorbent for CO2 Capture,” Fuel, 353, 129178
(2023).
14. Wang, L., Liu, S., Wang, R., Li, Q. and Zhang, S., “Regulating
Phase Separation Behavior of a DEEA-TETA Biphasic Solvent
Using Sulfolane for Energy-saving CO2 Capture,” Environ. Sci.
Technol., 53, 12873-12881(2019).
15. Wang, R., Zhao, H., Wang, Y., Qi, C., Zhang, S., Wang, L. and
Li, M., “Development of Biphasic Solvent for CO2 Capture by
Tailoring the Polarity of Amine Solution,” Fuel, 325, 124885
(2022).
16. Shen, S., Shi, X., Li, C., Guo, H., Long, Q., Wang, S. and Yin,
X., “Nonaqueous (amine+glycol ether) Solvents for Energy-efficient
CO2 Capture: New Insights into Phase Change Behaviors and
Assessment of Capture Performance,” Sep. Purif. Technol., 300,
121908(2022).
17. Hong, J. H., Wang, S., Lee, W. B., Choi, W. M., and Hong, Y.
K., “Phase Separation Characteristics and Capture Performance
in Carbon Dioxide Capture by Blended Absorbents,” Korean
Chem. Eng. Res., 63, 72-79(2005).
18. Wang, S., Lee, J. K., You, J. K. and Hong, Y. K., “Absorption
Characteristics of Water-Lean Biphasic Solvent Composed of 2-
(Ethylamino)Ethanol and Diethylene Glycol Diethyl Ether for
CO2 Capture,” Clean Technol., 30, 337-344(2024).
19. Zhang, Y., Dong, J., Ning, P., Wang, L., Wang, J., Ma, Y. and
Wang, X., “Investigation of CO2 Capture Performance of
Polyamine/Organic Alcohol Ether Non-aqueous Absorbent
Regulated by Ethylene Glycol,” J. Environ. Chem. Eng., 12,
113694(2024).
20. Wang, S., Long, Q. and Shen, S., “Regulating Phase Change Behaviors
of Water-lean Absorbents Containing Potassium Prolinate
and 2-Butoxyethanol for CO2 Capture: Effect of Water Content,”
Sep. Purif. Technol., 301, 122059(2022).
21. Lide, D. R. (ed), CRC Handbook of Chemistry and Physics, 102nd
ed., CRC Press, FL (2021).
22. Ping, T., Dong, Y. and Shen, S., “Energy-efficient CO2 Capture
Using Nonaqueous Absorbents of Secondary Alkanolamines with
a 2-Butoxyethanol Cosolvent,” ACS Sustainable Chem. Eng., 8,
18071-18082 (2020).

The Korean Institute of Chemical Engineers. F5,119, Anam-ro, Seongbuk-gu, Seoul, Republic of Korea
Phone No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Chemical Engineering Research 상단으로