Articles & Issues
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received June 25, 2025
Revised July 30, 2025
Accepted August 11, 2025
Available online September 24, 2025
- Acknowledgements
- 이 연구는 정부(산업통상자원부)의 재원으로 한국에너지기술평 가원의 지원을 받아 수행된 연구입니다(RS-2022-KP002473, 에너 지국제공동연구사업). 이 연구는 정부(산업통상자원부)의 재원으로 한국에너지기술평가원의 지원을 받아 수행된 연구입니다(RS-2023- 00243974, 디지털기반 지속가능 에너지 공정혁신 융합대학원).
-
This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits
unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
All issues
선박 탑재형 LNG 냉열 기반 CO2 액화 공정의 작동 유체 비교 및 최적화
Optimization and Comparison of Working Fluids for an Onboard CO2 Liquefaction Process Utilizing LNG Cold Energy
https://doi.org/10.9713/kcer.2025.63.4.105133
Download PDF
Abstract
본 연구는 LNG(Liquified Natural Gas) 연료 추진 선박에 적용 가능한 ORC(Organic Rankine Cycle) 기반 CO2 액화
시스템을 제안하고, LNG 재기화 과정에서 발생하는 냉열을 효율적으로 활용하여 에너지 소비를 최소화하는 방안을
제시하였다. Aspen HYSYS를 활용해 2 TPH(tonne per hour) 규모 공정을 시뮬레이션하였으며, 다양한 단일 및 혼합
냉매 조합에 대해 열역학적 특성을 분석하고, GA(Genetic Algorithm)를 통해 작동 유체 조성과 유량을 최적화하였다.
분석 결과, 혼합 냉매는 LNG의 비등온 증발 특성과 효과적으로 매칭되어 단일 냉매 대비 낮은 비에너지 소비와 높은
팽창기 출력을 나타냈고, 특히 본 시스템에서는 R14-R290 조합이 우수한 성능을 보였다. 제안된 시스템은 CO2 액화를
위한 에너지 자립적 운전을 가능하게 하여, 선박의 에너지 효율성과 환경 대응력을 동시에 향상시킬 수 있다.
This study proposes an ORC (Organic Rankine Cycle)-based CO2 liquefaction system applicable to LNG
(Liquified Natural Gas)-fueled ships, aiming to minimize energy consumption by efficiently utilizing the cold energy
released during the LNG regasification process. A 2 TPH (tonne per hour) scale process was simulated using Aspen HYSYS,
and various single and mixed refrigerant combinations were analyzed in terms of their thermodynamic properties. A GA
(Genetic Algorithm) was employed to optimize the composition and flow rate of the working fluids. The results show
that mixed refrigerants more effectively match the non-isothermal evaporation characteristics of LNG, achieving lower
specific energy consumption and higher expander output compared to single refrigerants. In particular, the R14–R290
mixtures demonstrated superior performance. The proposed system enables energy self-sufficient CO2 liquefaction, thereby
improving both the energy efficiency and environmental responsiveness of ships.
References
Reduction in the Global Transport Sector: Focusing on the Shipping
Industry,” KIEP Basic Materials 22(2), (2022).
2. Risso, R., Cardona, L., Archetti, M., Lossani, F., Bosio, B. and
Bove, D., “A Review of On-Board Carbon Capture and Storage
Techniques: Solutions to the 2030 IMO Regulations,” Energies,
16, 6748(2023).
3. Ahmed, Y. A., Lazakis, I. and Mallouppas, G., “Advancements
and Challenges of Onboard Carbon Capture And Storage Technologies
for the Maritime Industry: A Comprehensive Review,”
Marine Systems and Ocean Technology, 20(1), 1-52(2025).
4. He, T., Chong, Z. R., Zheng, J., Ju, Y. and Linga, P., “LNG Cold
Energy Utilization: Prospects and Challenges,” Energy, 170, 557-
568(2019).
5. Kim, K. and Jeong, J., “LNG Fuel Gas Supply System (FGSS),”
J. Soc. Nav. Archit. Korea, 50(4), 40-43(2013).
6. Kemper, J., Sutherland, L., Watt, J. and Santos, S., “Evaluation and
Analysis of the Performance of Dehydration Units for CO2 Capture,”
Energy Procedia, 63, 7568-7584(2014).
7. Burgass, R. and Chapoy, A., “Dehydration Requirements for CO2
and Impure CO2 for Ship Transport,” Fluid Phase Equilib, 572,
113830(2023).
8. Delic, A. et al., “Experimental Investigation of Solid Formation
under CO2 Liquefaction Conditions for Ship Transport at 7 and
16 Bar with Water Content up to 300 ppm,” Ind Eng Chem Res,
64, 887(2024).
9. Seo, Y., Huh, C., Lee, S. and Chang, D., “Comparison of CO2
Liquefaction Pressures for Ship-based Carbon Capture and Storage
(CCS) Chain,” International Journal of Greenhouse Gas
Control, 52, 1-12(2016).
10. Chen, F. and Morosuk, T., “Exergetic and Economic Evaluation
of CO2 Liquefaction Processes,” Energies 14, 7174(2021).
11. He, S., Chang, H., Zhang, X., Shu, S. and Duan, C., “Working
Fluid Selection for an Organic Rankine Cycle Utilizing High and
Low Temperature Energy of an LNG Engine,” Appl. Therm. Eng.,
90, 579-589(2015).
12. Sung, T. and Kim, K. C., “Thermodynamic Analysis of a Novel
Dual-loop Organic Rankine Cycle for Engine Waste Heat and
LNG Cold,” Appl. Therm. Eng., 100, 1031-1041(2016).
13. Tian, Z., Zeng, W., Gu, B., Zhang, Y. and Yuan, X., “Energy, Exergy,
and Economic (3E) Analysis of An Organic Rankine Cycle Using
Zeotropic Mixtures Based on Marine Engine Waste Heat and
LNG Cold Energy,” Energy Convers Manag, 228, 113657(2021).
14. Shingan, B., Pandiyan, K. and Gupta, D. K., “Enhancing Energy
Efficiency: Design and Simulation of Air Fractionation Unit Integrated
Through LNG Cold Energy and Two-stage Organic Rankine
Cycles,” Canadian Journal of Chemical Engineering, 103(5),
2018-2038(2024).
15. He, T., Ma, H., Ma, J., Mao, N. and Liu, Z., “Effects of Cooling
and Heating Sources Properties and Working Fluid Selection on
Cryogenic Organic Rankine Cycle for LNG Cold Energy Utilization,”
Energy Convers Manag, 247, 114706(2021).
16. He, T., Ma, H., Ma, J., Mao, N. and Liu, Z., “Effects of Cooling
and Heating Sources Properties and Working Fluid Selection on
Cryogenic Organic Rankine Cycle for LNG Cold Energy Utilization,”
Energy Convers Manag, 247, 114706(2021).
17. Shingan, B. and Parthasarthy, V., “Recent Progress in Cold Utilization
of Liquefied Natural Gas,” Chem Eng Technol, 46(9),
1823-1837(2023).
18. Lee, S. W., Kwon, J. G., Kim, M. H. and Jo, H. J., “Cycle Analysis
and Economic Evaluation for Seawater-LNG Organic Rankine
Cycles,” Energy, 234, 121259(2021).
19. Peng, D. Y. and Robinson, D. B., “A New Two-Constant Equation
of State,” Industrial and Engineering Chemistry Fundamentals,
15(1), 59-64(1976).
20. He, T., Ma, H., Ma, J., Mao, N. and Liu, Z., “Effects of Cooling
and Heating Sources Properties and Working Fluid Selection on
Cryogenic Organic Rankine Cycle for LNG Cold Energy Utilization,”
Energy Convers Manag, 247, 114706(2021).
21. Wang, S., Liu, C., Zhang, S., Li, Q. and Huo, E., “Multi-objective
Optimization and Fluid Selection of Organic Rankine Cycle
(ORC) System Based on Economic-environmental-sustainable
Analysis,” Energy Convers Manag, 254, 115238(2022).
22. Smith, C. et al., “The Earth’s Energy Budget, Climate Feedbacks
and Climate Sensitivity Supplementary Material Lead Authors:
Contributing Authors”.
23. Lee, U., Kim, K. and Han, C., “Design and Optimization of
Multi-component Organic Rankine Cycle Using Liquefied Natural
Gas Cryogenic Exergy,” Energy, 77, 520-532(2014).
24. Lee, Y., Kim, J., Ahmed, U., Kim, C. and Lee, Y. W., “Multi-objective
Optimization of Organic Rankine Cycle (ORC) Design Considering
Exergy Efficiency and Inherent Safety for LNG Cold Energy
Utilization,” J. Loss. Prev. Process Ind., 58, 90-101(2019).
25. Park, M., Gbadago, D. Q., Jung, H. and Hwang, S., “Achieving
Optimal Energy Efficiency, Enhanced Exergy Performance, and
Comprehensive Economic Analysis in Hydrogen Refrigeration
Systems,” Energy, 316, 134541(2025).

