Articles & Issues
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received May 30, 2025
Revised June 29, 2025
Accepted July 12, 2025
Available online September 5, 2025
- Acknowledgements
- 본 연구는 2020년도 정부(산업통상자원부)의 재원으로 한국에너 지기술평가원의 지원을 받아 수행된 연구입니다(20208401010070, 3 MWth 매체순환연소 스팀생산 기술 개발).
-
This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits
unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
All issues
바이오가스를 활용한 매체순환연소의 경제성 및 민감도 분석
Economic and Sensitivity Analysis on Chemical Looping Combustion of Biogas
https://doi.org/10.9713/kcer.2025.63.4.105131
Download PDF
Abstract
음식물류 폐기물, 가축 분뇨, 하수 슬러지 등 유기성 폐기물로부터 생산되는 바이오가스는 온실가스 저감이 가능한 대체 에너지원이다. 바이오가스를 연료로 사용할 경우 탄소중립으로 간주되며, 연소 후 이산화탄소를 포집하면 탄소역배출(carbon negative emission)이 가능하다. 본 연구에서는 바이오가스의 정제 및 고질화, 가스엔진 및 가스터빈을 이용한 전기 생산, 매체순환연소(Chemical Looping Combustion, CLC)를 통한 전기 및 스팀 생산을 포함한 경제성 분석을 수행하였다. 탄소중립 시나리오로는 정제 및 고질화된 바이오가스를 바이오메탄으로 판매하는 경우(Case 1)와 이를 연료로 전기를 생산(가스엔진 또는 가스터빈)하는 경우(Case 2)로 구성하였다. 탄소 역배출 시나리오는 가스엔진 또는 가스터빈으로 전기를 생산한 후 이산화탄소를 포집하는 경우(Case 3), 정제된 바이오가스를 CLC 연료로 사용하는 경우(Case 4), 바이오메탄을 CLC 연료로 사용해 전기 또는 스팀을 생산, 판매하는 경우(Case 5)로 구성하였다. 분석에는 투자비, 운영비, 원료비를 포함하였으며, 제품은 바이오메탄(800원/Nm3), 전기(204.2원/kWh), 스팀(60,000원/톤), 탄소 배출권(12원/kgCO2), 액화 CO2(25원/kgCO2)로 가정하였다. 모든 규모(3, 15, 30 MWth)에서 바이오메탄 직접 판매가 가장 수익성이 높았으며, CLC를 활용한 탄소 역배출은 15 MWth 이상에서 경제성이 확보되었다. CLC가 바이오메탄 직접 판매보다 더 높은 수익을 내기 위해서는, 스팀 가격이 70,000~76,000원/톤 또는 탄소배출권 가격이 80~120원/kgCO2 수준까지 상승해야 함을 민감도 분석을 통해 확인하였다.
Biogas, produced from organic waste such as food waste, livestock manure, and sewage sludge, can serve
as an alternative energy source that reduces greenhouse gas emissions. Using biogas as a fuel is considered carbonneutral
and capturing carbon dioxide (CO2) after combustion enables carbon negative emission. This study conducted an
economic analysis of biogas utilization, covering purification and upgrading, electricity generation using gas engines,
gas turbines, and chemical looping combustion (CLC), as well as steam production via CLC. The carbon-neutral scenarios
included the sale of upgraded biogas as biomethane (Case 1) and electricity generation using biomethane in gas engines
or gas turbines (Case 2). Carbon negative emission scenarios were defined as electricity generation using gas engines or
turbines with CO2 capture (Case 3), the use of purified biogas in CLC (Case 4), and the use of biomethane in CLC to produce
and sell electricity or steam (Case 5). The analysis included investment, operating, and feedstock costs. Evaluated products
were biomethane (800 KRW/Nm³), electricity (204.2 KRW/kWh), steam (60,000 KRW/ton), carbon credit (12 KRW/
kgCO2), and liquefied CO2 (25 KRW/kgCO2). Direct biomethane sales showed the highest profit at all scales (3, 15, 30
MWth). Carbon negative emission scenario using CLC became viable at 15 MWth or larger, with the best result from
biomethane-fueled CLC producing and selling steam. For CLC to outperform biomethane sales, steam must reach
70,000~76,000 KRW/ton or carbon credit 80-120 KRW/kgCO2.
References
Tech Issue Analysis Report,” Green Technology Center, 2018.
2. Kang, D. W., Shin, H. D., Kim, Y. S., Hur, K. B. and Park, J. K.,
“Operating Characteristics Study of a Small Gas/Steam Turbine
Combined System Using Biogas,” Journal of Fluid Machinery,
15(3), 51-56(2012).
3. Kim, H., Baek, Y. and Won, W., “Techno-Economic Analysis
and Life-Cycle Assessment for the Production of Hydrogen from
Biogas,” Trans. of the Korean Hydrogen and New Energy Society,
32(5), 417-429(2021).
4. Heo, N., Lee, S. and Kim, B., “Biogas Production and Utilization
Technologies from Organic Waste,” The Korean Society for
New and Renewable Energy, 4(2), 21-30(2008).
5. Lee, K., Cha, H., Chun, K. and Song, S., “Generating Efficiency and
NOx Emissions of a Gas Engine Generator Fuelled with Biogas,”
The Korean Society for New and Renewable Energy, 360-
390(2009).
6. Allegue, L. B. and Hinge, J., “Biogas and Bio-syngas Upgrading,”
Danish Technological Institute, 2012.
7. Sun, Q., Li, H., Yan, J., Liu, L., Yu, Z. and Yu, X., “Selection of
Appropriate Biogas Upgrading Technology-a Review of Biogas
Cleaning, Upgrading and Utilization,” Renewable and Sustainable
Energy Reviews, 51, 521-532(2015).
8. Kim, G. J. and Kim, L. H., “Analysis of Cause of Engine Failure
During Power Generation Using Biogas in Sewage Treatment
Plant,” Journal of Energy Engineering, 25(4), 13-29(2016).
9. Jang, J. K., Yang, E., Kang, G. C., Moon, J.-P. and Yun, S.-W.,
“Evaluation of the Design and Operating Conditions of an Adsorption
Reactor for Hydrogen Sulfide Removal in Biogas,” J. Korean
Soc. Environ. Eng., 46(11), 668-675(2024).
10. Song, M. J., Kim, W. C., Kim, H., Kim, J.-G. and Lee, S. Y.,
“Corrosion Failure Analysis of a Biogas Pipe,” J. Korean Society
for Heat Treatment, 36(3), 153-160(2023).
11. Lee, H. C. and Lee, J.-H., “Empirical Study of Biogas Purification
Equipment,” Plant Journal, 18(4), 58-65(2023).
12. Niesner, J., Jecha, D. and Stehlik, P., “Biogas Upgrading Technologies:
State of Art Review in European Region,” Chemical
Engineering Transactions, 35, 517-522(2013).
13. Ku, B., Kim, Y.-T., Park, J.-W., Kang, J. and Seo, D.-W., “A
Study on the Analysis of the Current Status of the Domestic Biogas
Generation Market,” Proceedings of the KIEE Conference, 496-
497(2023).
14. Ministry of Environment, Renewable Energy Task Force, “Transition
from Management to Production: A Roadmap for Expanding
Bio-water Energy Using Environmental Facilities,” Ministry
of Environment, 2022.
15. Ministry of Environment, “Selection of 8 Local Governments for
the 2024 Integrated Biogasification Project,” Press Release, 2024.
16. Ministry of Environment, “Operational Guidelines for the Biogas
Production Target System,” Press Release, 2024.
17. Ryu, H.-J., Jin, G.-T. and Yi, C.-K., “Demonstration of Inherent
CO2 Separation and NO NOx Emission in a 50 kW Chemical-Looping
Combustor: Continuous Reduction and Oxidation Experiment,”
Greenhouse Gas Control Technologies, 2, 1907(2005).
18. Park, Y. C., Lee, T.-Y., Park, J. and Ryu, H.-J., “Performance and
Economic Analysis of Natural Gas/Syngas Fueled 100 MWth
Chemical-Looping Combustion Combined Cycle Plant,” Korean
Chem. Eng. Res., 47(1), 65-71(2009).
19. Hoteit, A., Chandel, M. K., Durecu, S. and Delebarre, A., “Biogas
Combustion in a Chemical Looping Fluidized Bed Reactor,”
International Journal of Greenhouse Gas Control, 3, 561-567
(2009).
20. Ryu, H.-J., Lee, D., Nam, H., Hwang, B. W., Kim, H., Won, Y.,
Ra, H. W., Yoon, S. M. and Baek, J.-I., “Combustion Characteristics
of Natural Gas and Syngas Using Mass Produced Oxygen
Carrier Particle in a 0.5 MWth Chemical Looping Combustion
System,” Trans. of the Korean Hydrogen and New Energy Society,
32(2), 134-142(2021).
21. Baek, J.-I., Choun, M., Oh, J., Lee, D. R., Lee, G., Kim, D.,
Hwang, B. W., Won, Y. and Ryu, H.-J., “The K-CLC Project:
Construction of 3 MWth NG-fueled CLC Steam Generation System
and Synthetic Oxygen Carrier Development,” Proceeding of
the 17th International Conference on Greenhouse Gas Control
Technologies (GHGT-17), 2024.
22. Jung, J. and Kim, K., “Estimation of Greenhouse Gas(GHG)
Reductions from Bioenergy (Biogas, Biomass): A Cast Study of
South Korea,” Journal of Korean Society for Atmospheric Environment,
33(4), 393-402(2017).
23. Nam, J. J., Yoon, Y.-M., Lee, Y. H., So, K. H. and Kim, C.-H.,
“Life Cycle Assessment of Greenhouse Gas Emissions from
Livestock and Food Wastes Co-digestive Biogas Production
System,” Korean Journal of Environmental Agriculture, 27(4),
406-412(2008).
24. Hullu, J. D., Maassen, J. I. W., van Meel, P. A., Shazad, S., Vaessen,
J. M. P. and Bini, L., “Comparing Different Biogas Upgrading
Techniques: Final Report,” Eindhoven University of Technology,
2008.
25. Starr, K., Gabarrell, X., Villalba, G., Talens, L. and Lombardi,
L., “Life Cycle Assessment of Biogas Upgrading Technologies,”
Waste Management 32, 991-999(2012).
26. Tajima, H., Yamasaki, A. and Kiyono, F., “Energy Consumption
Estimation for Greenhouse Gas Separation Processes by Clathrate
Hydrate Formation,” Energy, 29, 1713-1729(2004).
27. Allegue, L. B. and Hinge, J., “Biogas and Bio-syngas Upgrading,”
Danish Technological Institute report, 2012.
28. Jo, J. H., Hoon, C., Lee, S. and Kim, K.-K., “Appropriate Allocation
Plans for Waste and Bioenergy by Usage(I): Focusing on Bio gas,” Korean Environment Institute, 2014.
29. Persson, M., Jonsson, O. and Wellinger, A., “Biogas Upgrading
to Vehicle Fuel Standards and Grid Injection,” IEA Bioenergy,
Task 37, Report, 2006.
30. Bauer, F., Hulteberg, C., Persson, Y. and Tamm, D., “Biogas Upgrading-
Review of Commercial Technologies,” SGC Rapport, 270,
Svenskt Gastekniskt Center AB, 2013.
31. Hagen, M., Polman, E., Jensen, J. K., Myken, A., Jonsson, O. and
Dahl, A., “Adding Gas From Biomass to the Gas Grid,” SGC Report ,
118, Swedish Gas Center, 2001.
32. Ryu, H.-J., Kim, H., Nam, H., Hwang, B. W., Won, Y., Kim, D.,
Baek, J.-I. and Choun, M., “Reaction Characteristics of Mass
Produced Oxygen Carriers for 3 MWth Chemical Looping Combustion
System,” Journal of Energy & Climate Change, 17(1), 46-
56(2022).
33. GoWES Co., Ltd., “Systems Engineering,” GoWES Official Website,
Available at: https://gowes.co.kr/kor/business/systems_engineering.
html.
34. Hankook Engineering Development Co., Ltd., “Steam Piping Project
for STX Energy’s Main Branch Line in Banwol Industrial
Complex,” Hankook Engineering Development Website, Available
at: https://m.hkj.co.kr/page/page51.
35. Smith, R., “Chemical Process Design and Integration (2nd ed.),”
John Wiley & Sons, Ltd., 2005.
36. Baek, J.-I., Ryu, J., Lee, J. B., Eom, T.-H., Kim, K.-S., Yang, S.-R.
and Ryu, C. K., “Highly Attrition Resistant Oxygen Carrier for
Chemical Looping Combustion,” Energy Procedia, 4, 349-355(2011).
37. ESMAP, Study of Equipment Prices in the Power Sector, Technical
Paper 122/09, World Bank, 2009. Available at: https://www.esmap.org/
sites/default/files/esmap-files/TR122-09_GBL_Study_of_Equipment_
Prices_in_the_Power_Sector.pdf.
38. Tribe, M. A. and Alpine, R. L. W., “Scale Economies and the
‘0.6 Rule’,” Engineering Costs and Production Economics, 10,
271-278(1986).
39. Pilorge, H., McQueen, N., Maynard, D., Psarras, P., He, J., Rufael, T.
and Wilcox, J., “Cost Analysis of Carbon Capture and Sequestration
of Process Emissions from the U.S. Industrial Sector,”
Environ. Sci. Technol., 54, 7524-7532(2020).
40. Adu, E., Zhang, Y. D., Liu, D. and Tontiwachwuthikul, P.,
“Parametric Process Design and Economic Analysis of Post-Combustion
CO2 Capture and Compression for Coal and Natural Gas-
Fired Power Plants,” Energies, 13, 2519-2546(2020).
41. Yang, S., Lee, U., Lim, Y., Jeong, Y. S., Kim, J., Lee, C., Han,
C., “Process Design and Cost Estimation of Carbon Dioxide
Compression and Liquefaction for Transportation,” Korean Chem.
Eng. Res., 50(6), 988-993(2012).
42. Kim, S.-S., “Applications and Technical Standards for Biogas,”
Journal of the Korea Organic Resources Recycling Association,
18(3), 38-49(2010).
43. Korea Gas Corporation (KOGAS), “Natural Gas Tariff System,”
KOGAS Official Website, Available at: https://www.kogas.or.kr/
site/koGas/1040401000000.
44. Korea Power Exchange (KPX), “Yearly System Marginal Price
(SMP),” KPX Official Website, Available at: https://www.kpx.or.kr/
smpYearly.es?mid=a10606080400&device=pc.
45. Korea Energy Agency, New and Renewable Energy Center, “REC
Trade Performance Reports,” New and Renewable Energy Integrated
Support System. Available at: https://onerec.kmos.kr/portal/
rec/selectRecReport_tradePerformanceList.do?key=1971.
46. TIN News, “GS E&R’s Monopoly Steam Supply and Its Refusal
to Cooperate,” TIN News, July 7, 2022. Available at: https://www.
tinnews.co.kr/22944.
47. iGasNet, “Present and Future of the Domestic Liquid CO2 Market,”
iGasNet, March 22, 2023. Available at: http://www.igasnet.
com/news/articleView.html?idxno=19563.
48. Today Energy, “Concerns Over Domestic Liquid CO2 (L-CO2)
Supply Shortage,” Today Energy, August 31, 2023. Available at:
https://www.energy-news.co.kr/news/articleView.html?idxno=71219.
49. Lee, M.-H., Taekyung Chemical (006890): Beneficiary of Fresh
Food Delivery Boom, IBK Investment & Securities Research
Center, June 15, 2021.
50. Ministry of Environment (MOE), Compilation of Laws and
Regulations on Allocation and Trading of Greenhouse Gas Emission
Permits, March 2021.

