Articles & Issues
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received March 31, 2025
Revised June 24, 2025
Accepted July 18, 2025
Available online August 29, 2025
- Acknowledgements
- 본 연구는 산업통상자원부 및 한국산업기술기획평가원(KEIT)의 지원을 받아 진행되었습니다(과제번호: 141518266(20012133), 20017400).
-
This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits
unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
All issues
고분자전해질 연료전지(PEMFC)에서 열화된 막의 성능 저하 방지를 위한 전압 범위 연구
Study on Voltage Range to Prevent Performance Degradation of Degraded Membranes in Polymer Electrolyte Membrane Fuel Cells (PEMFC)
https://doi.org/10.9713/kcer.2025.63.4.105130
Download PDF
Abstract
고분자전해질 연료전지의 내구성 향상을 위한 연구가 활발히 진행되고 있다. 구동 과정 중 고분자막의 수명을 연장시키기 위해서는 막의 열화 속도를 감소시키는 연구가 필요하다. 따라서 초기에 전해질막을 가속 열화시킨 후 전압을 변화시키면서 막의 열화 속도를 측정해 열화된 막의 열화 속도를 감소시키는 방법을 전압 제어를 통해 연구하고자 하였다. 동일한 MEA 3개를 216시간까지 개회로전압(OCV) hold로 가속 열화시켰을 때 고분자막과 전극이 열화되었다.
이 세 MEA를 0.80 V, 0.87 V, OCV 전압으로 구동하면서 성능변화를 측정하였다. OCV 상태를 그대로 유지했을 때 전극과 막의 열화에 72시간에 수명이 다했지만, 0.8~0.87 V 유지한 경우 144시간 이상의 수명으로 내구성이 향상되었다. 전극과 막이 열화된 상태에서 OCV와 같은 높은 전압을 유지하는 것은 열화속도를 가속화시키므로 0.9 V 이하의 낮은 전압에서 연료전지를 구동하는 것이 수명을 연장시킬 수 있음을 확인했다.
Research on improving the durability of polymer electrolyte fuel cells is actively being conducted. To extend the lifespan of the polymer membrane during operation, it is necessary to study methods to reduce its degradation rate. Therefore, this study aimed to investigate voltage control as a method to slow down the degradation rate of an already degraded electrolyte membrane. Initially, three identical MEAs were subjected to accelerated degradation for 216 hours under open circuit voltage(OCV) hold, leading to the degradation of both the polymer membrane and the electrode. The performance of these degraded MEAs was then evaluated while operating at 0.80 V, 0.87 V, and OCV voltage. When the OCV condition was maintained, the membrane and electrode completely degraded within 72 hours.
However, when operated at 0.80~0.87 V, the durability improved, with a lifespan extending beyond 144 hours. Maintaining a high voltage, such as OCV, in a degraded state accelerated the degradation process. Therefore, it was confirmed that operating the fuel cell at a lower voltage, below 0.9 V, can help extend its lifespan.
References
of Under-ribs Convection on Enhanced Drainage Parallel Flow
Field for Proton Exchange Membrane Fuel Cell,” Korean J. Chem.
Eng., 39, 2055-2068(2022).
2. Woo, S., Kim, S., Woo, S., Park, S., Kang, Y., Jung, N. and Yim,
S., “Investigating the Effect of Solvent Composition on Ink
Structure and Crack Formation in Polymer Electrolyte Membrane
Fuel Cell Catalyst Layers,” Korean J. Chem. Eng., 40(10),
2455-2462(2023).
3. Yang, G., Wang, H., Su, F., Li, S., Zhang, G., Sun, J., Shen, Q.,
Jiang, Z., Liao, J. and Chen, P., “Effect of Porosity Gradient in
Cathode Gas Diffusion Layer on Electrochemical Performance
of Proton Exchange Membrane Fuel Cells,” Korean J. Chem.
Eng., 40(7), 1598-1605(2023).
4. Wang, Y., Chen, K. S., Mishler, J., Cho, S. C. and Adroher, X.
C., “A Review of Polymer Electrolyte Membrane Fuel Cells:
Technology, Applications, and Needs on Fundamental Research,”
Applied Energy, 88(4), 981-1007(2011).
5. Park, S., Choi, D., Lee, D., Choi, B. and Yoo, S., “Current Progress
of Electrocatalysts for Anion Exchange Membrane Fuel Cells,”
Korean J. Chem. Eng., 40(7), 1549-1562(2023).
6. Oh, S., Lim, D. and Park, K., “Durability Evaluation of PEMFC
Electrode Using Oxygen as Cathode Gas,” Korean Chem. Eng.
Res., 59(1), 11-15(2021).
7. Venkatesan, S., Lim, C., Holdcroft, S. and Kjeang, E., “Progression
in the Morphology of Fuel Cell Membranes upon Conjoint
Chemical and Mechanical Degradation,” Kjeang, J. Electrochem.
Soc. 163(7), F637(2016).
8. Watanabe, M., Tsurumi, K., Mizukami, T., Nakamura, T. and
Stonehart, P., “Activity and Stability of Ordered and Disordered
Co-Pt Alloys for Phosphoric Acid Fuel Cells,” J. Electrochem.
Soc., 141(10), 2659-2668(1994).
9. Akita, T., Taniguchi, A., Maekawa, J., Siroma, Z., Tanaka, K.,
Kohyama, M. and Yasuda, K., “Analytical TEM Study of Pt Particle
Deposition in the Proton-exchange Membrane of a Membrane
elctrode-Assembly,” J. Power Sources, 159(1), 461-467(2006).
10. Zhai, Y., Zhang, H., Xing, D. and Shao, Z., “The Stability of Pt/C
Catalyst in H3PO4/PBI PEMFC During High Temperature Life
Test,” J. Power Sources, 164(1), 126-133(2006).
11. Oh, S., Han, Y., Yoo, D., Kim, M., Choi, Y. and Park, K., “Effects
of Changes in Accelerated Degradation Conditions for Catalyst
Supports in Polymer Electrolyte Fuel Cell,” Korean Chem. Eng.
Res., 62(1), 7-12(2024).
12. Oh, S., Han, Y., Chung, M. and Park, K., “Comparison of Catalyst
Support Degradation of PEMFC Electrocatalysts Pt/C and
PtCo/C,” Korean Chem. Eng. Res., 61(3), 341-347(2023).
13. Serhiy, C., Nadiia, K., Karl, J. and Mayrhofer, J., “Durability of
Platinum-based Fuel Cell Electrocatalysts: Dissolution of Bulk
and Nanoscale Platinum,” Nano Energy, 29, 275-298(2016).
14. U.S. DOE Fuel Cell Technologies Office, Multi-Year Research,
Development, and Demonstration Plan, Section 3.4 Fuel Cells,
p. 1(2016).
15. Daido University, Ritsumeikian Univ., Tokyo Institute of Tech
nology, Japan Automobile Research Ins., “Cell Evaluation and
Analysis Protocol Guidline,” NEDO, Development of PEFC Technologies
for Commercial Promotion-PEFC Evaluation Proj ect,
January 30(2014).
16. Yoo, D., Oh, S., Jung, S., Jeong, J. and Park, K., “Effect of Voltage
Range and Number of Activation Cycles in the Activation Process
of a Polymer Electrolyte Fuel,” Korean Chem. Eng. Res.,
61(1), 58-61(2023).

