Articles & Issues
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received March 24, 2025
Revised May 2, 2025
Accepted May 2, 2025
Available online August 1, 2025
-
This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits
unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
All issues
Electrochemical Characteristics of Double-coated Si@C@TiO2 Anode Composite for Li-Ion Battery
https://doi.org/10.9713/kcer.2025.63.3.105128
Download PDF
Abstract
In this study, the double-coated Si@C@TiO2 composite was prepared as anode material of a highperformance
lithium-ion battery. The Si@C@TiO2 anode composite was successfully synthesized via polymerization of
dopamine and sol-gel method using TBOT (Titanium butoxide). It was designed with a double-layer coating structure
consisting of an inner carbon layer to provide high conductivity and an outer TiO2 layer to enhance the structural
stability of the composite. The physical properties of the synthesized composite were analyzed using HR-SEM, EDS,
XRD and TGA. Furthermore, the electrochemical properties were investigated to optimize the amount of dopamine
hydrochloride and the design of double-layer coating structure in the electrolyte of 1 M LiPF6 in EC/DEC (1:1 vol% ratio)
with 10 wt% FEC. The initial discharge capacity of Si@C@TiO2 composite at 0.1 C was 2603.8 mAh/g. The Si@C@TiO2
composite exhibited a high reversible capacity of 1646.0 mAh/g with a capacity retention of 82.9 % after 100 cycles.
Also, it showed a high capacity of 615.0 mAh/g at 3 C. As a result, the double-coated Si@C@TiO2 composite provides
superior cycling stability and high-rate capability compared with single-coated Si@C and Si@TiO2 anode materials for
high-performance LIBs.
References
A., Savelev, E. and Romanovski, V., “Simple Solution Plasma
Synthesis of Ni@NiO as High‐Performance Anode Material for
Lithium‐Ion Batteries Application,” ChemPlusChem, 89(10),
e202400427(2024).
2. Fan, Z., Wang, Y., Zheng, S., Xu, K., Wu, J., Chen, S. and Wang,
Z., “A Submicron Si@C Core-shell Intertwined with Carbon
Nanowires and Graphene Nanosheet as a High-performance
Anode Material for Lithium Ion Battery,” Energy Storage Mater.,
39, 1-10(2021).
3. Li, L., Deng, Y., Hu, K., Xu, B., Wang, N., Bai, Z. and Yang, J.,
“Nanostructure Designing and Hybridizing of High-capacity Silicon-
based Anode for Lithium-ion Batteries,” Prog. Nat. Sci.:
Mater. Int., 33(1), 16-36(2023).
4. Xu, K., Liu, X., Guan, K., Yu, Y., Lei, W., Zhang, S. and Zhang,
H., “Research Progress on Coating Structure of Silicon Anode
Materials for Lithium‐Ion Batteries,” ChemSusChem, 14(23),
5135-5160(2021).
5. Zhang, Y., Xie, M., He, Y., Zhang, Y., Liu, L., Hao, T. and Zhang,
Z. J., “Hybrid NiO/Co3O4 Nanoflowers as High-performance
Anode Materials for Lithium-ion Batteries,” Chem. Eng. J., 420,
130469(2021).
6. Ye, J., Chen, Z., Hao, Q., Xu, C. and Hou, J., “One-step Mild
Fabrication of Porous Core-shelled Si@TiO2 Nanocomposite as
High Performance Anode for Li-ion Batteries,” J. Colloid Interface
Sci., 536, 171-179(2019).
7. Ma, Q., Zhao, Y., Hu, Z., Qu, J., Zhao, Z., Xie, H. and Yin, H.,
“Electrochemically Converting Micro-sized Industrial Si/FeSi2
to Nano Si/FeSi for the High-performance Lithium-ion Battery
Anode,” Mater. Today Energy, 21, 100817(2021).
8. Zhu, J., Ding, Y., Ma, Z., Tang, W., Chen, X. and Lu, Y., “Recent
Progress on Nanostructured Transition Metal Oxides as Anode
Materials for Lithium-ion Batteries,” J. Electron. Mater., 51(7),
3391-3417(2022).
9. Vats, B. N., Gupta, R., Gupta, A., Fatima, S. and Kumar, D.,
“Enhancing Li‐ion Battery Performance through the Integration
of Si@TiO2 Core‐Shell Nanoparticles with Natural Graphite,”
ChemistrySelect, 9(3), e202303545(2024).
10. Li, J., Wang, Y., Huang, Z., Huang, K., Qi, X. and Zhong, J.,
“Synthesis of Si/TiO2 Core–shell Nanoparticles as Anode Material
for High Performance Lithium Ion Batteries,” J. Mater. Sci.:
Mater. Electron., 27, 12813-12819(2016).
11. Niu, L., Zhang, R., Zhang, Q., Wang, D., Bi, Y., Wen, G. and Qin,
L. C., “Carbon-coated Silicon/graphite Oxide Composites as
Anode for Highly Stable Lithium-ion Batteries,” Phys. Chem.
Chem. Phys., 26(24), 17292-17302(2024).
12. Liu, L., Li, X., He, G., Zhang, G., Su, G. and Fang, C., “SiO@C/
TiO2 Nanospheres with Dual Stabilized Architecture as Anode
Material for High-performance Li-ion Battery,” J. Alloys Compd.,
836, 155407(2020).
13. Yi, Z., Lin, N., Xu, T. and Qian, Y., “TiO2 Coated Si/C Interconnected
Microsphere with Stable Framework and Interface for
High-rate Lithium Storage,” Chemical Engineering Journal, 347,
214-222(2018).
14. Koudriachova, M. V., Harrison, N. M. and de Leeuw, S. W.,
“Effect of Diffusion on Lithium Intercalation in Titanium Dioxide,”
Phys. Rev. Lett., 86(7), 1275(2001).
15. Ahuja, U., Wang, B., Hu, P., Rethore, J. and Aifantis, K. E.,
“Polydopamine Coated Si Nanoparticles Allow for Improved
Mechanical and Electrochemical Stability,” Electrochim. Acta, 392,
138993(2021).
16. Luo, W., Wang, Y., Wang, L., Jiang, W., Chou, S. L., Dou, S. X.
and Yang, J., “Silicon/mesoporous Carbon/crystalline TiO2 Nanoparticles
for Highly Stable Lithium Storage,” ACS Nano, 10(11),
10524-10532(2016).
17. Youn, J. W. and Lee, J. D., “Electrochemical Performances of
Petroleum Pitch Coated Si/C Fiber Using Electrospinning,” Korean
Chem. Eng. Res., 60(3), 439-445(2022).
18. Kim, E. B. and Lee, J. D., “Electrochemical Characteristics of
Dopamine coated Silicon/Silicon Carbide Anode Composite for
Li-Ion Battery,” Korean Chem. Eng. Res., 61(1), 32-38(2023).
19. Liu, Y., Elzatahry, A. A., Luo, W., Lan, K., Zhang, P., Fan, J. and
Zhao, D., “Surfactant-templating Strategy for Ultrathin Mesoporous
TiO2 Coating on Flexible Graphitized Carbon Supports for Highperformance
Lithium-ion Battery,” Nano Energy, 25, 80-90(2016).
20. Huang, J., “Diffusion Impedance of Electroactive Materials,
Electrolytic Solutions and Porous Electrodes: Warburg Impedance
and Beyond,” Electrochim. Acta, 281, 170-188(2018).
21. Wu, P., Chen, S. and Liu, A., “The Influence of Contact Engineering
on Silicon‐based Anode for Li‐ion Batteries,” Nano Select,
2(3), 468-491(2021).
22. Tan, L., Pan, L., Cao, C., Wang, B. and Li, L., “Nitrogen-doped
Carbon Coated TiO2 Nanocomposites as Anode Material to Improve
Cycle Life for Lithium-ion Batteries,” J. Power Sources, 253,
193-200(2014).

