Articles & Issues
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received January 4, 2025
Revised February 3, 2025
Accepted February 4, 2025
Available online May 1, 2025
-
This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits
unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
All issues
폐망간전지에서 재활용된 Mn3O4의 수분 방출 방지 특성을 활용한 리튬-공기 전지 촉매 응용
Recycled Mn3O4 from Spent Manganese Batteries as Electrocatalysts for Lithium-Air Batteries with Water Release Prevention
https://doi.org/10.9713/kcer.2025.63.2.105117
Download PDF
Abstract
폐망간 전지에서 추출한 Mn3O4는 리튬-공기 전지의 전기화학 촉매로 활용되어 안정적인 성능을 보였다. Mn3O4는 안정적인 스피넬 구조를 형성하여 방전 과정에서 추가적인 수분 방출이 없으며, 이는 전극 부식 및 전해질 부반응을 방지하고 안정적인 사이클 성능을 제공한다. Mn3O4는 γ-MnO2에 비해 완만한 초기 충전 곡선을 보여주며, 이는 Mn3O4가 Li2O2를 분해하기 위한 전기 촉매 활성이 있음을 나타낸다. 또한, Mn3O4는 30사이클까지 안정적인 성능을 유지한 반면, γ-MnO2는 18사이클 이후부터 불안정한 방전 용량을 보여준다. 이러한 결과는 Mn3O4가 수분 방출을 소재 구조적으로 방지함으로써 전지의 불안정성을 최소화하고 경제성과 내구성을 겸비한 촉매로써 활용가능함을 보여준다. 더나아가, 폐망간 전지의 효율적 재활용 및 리튬-공기 전지 실용화를 위한 새로운 기술적 가능성을 제시한다.
Mn3O4 extracted from spent manganese batteries demonstrated stable performance as an electrocatalyst for lithium-air batteries. Mn3O4 forms a stable spinel structure that prevents ad itional water release during the discharge process, effectively mitigating electrode corrosion and electrolyte side reactions while ensuring reliable cycling performance. Compared to γ-MnO2, Mn3O4 exhibits a gentler initial charging curve, suggesting superior electrocatalytic activity for Li2O2 decomposition. Furthermore, Mn3O4 maintained consistent performance for 30 cycles, whereas γ-MnO2 showed significant discharge instability after 18 cycles. These findings underscore that Mn3O4 prevents water release through its intrinsic structural stability, reducing operational instability while providing both cost-effective and durable catalytic performance. Moreover, this study highlights the feasibility of Mn3O4 as an electrocatalyst for the efficient recycling of spent manganese batteries and its real-world application in lithium-air batteries.
References
2. Cao, M. and Li, M., “Development Status and Improvement Measures of Electrode Materials for Aqueous Zinc Ion Batteries,” J. Electrochem. Soc., 171(5), 050543(2024).
3. Xiong, W.-S., Xia, Y., Jiang, Y., Qi, Y., Sun, W., He, D., Liu, Y.
and Zhao, X.-Z., “Highly Conductive and Robust Three-Dimensional Host with Excellent Alkali Metal Infiltration Boosts Ultrastable Lithium and Sodium Metal Anodes”, ACS Appl. Mater.
Interfaces, 10(25), 21254-21261(2018).
4. Feng, X., Ouyang, M., Liu, X., Lu, L., Xia, Y. and He, X., “Thermal Runaway Mechanism of Lithium Ion Battery for Electric Vehicles: A Review,” Energy Storage Mater., 10(1), 246-267 (2018).
5. Lee, J.-A., Kang, H., Kim, S., Lee, K., Byun, J. H., Kwon, E., Seo, S., Kwak, K., Ryu, K. H. and Choi, N.-S., “Unveiling Degradation Mechanisms of Anode-free Li-metal Batteries,” Energy Storage Mater., 73(1), 103826-103826(2024).
6. Hussain, S. K. and Bang, J. H., “Recent Progress in Co-Free, NiRich Cathode Materials for Lithium-Ion Batteries,” Bull. Korean Chem. Soc., 45(1), 4-15(2024).
7. Yatheendra, A., Narayanan A. M., Babu, J. S., Rajan, R. and Sandhyarani, N., “Synergistic Effect of Ag-Doped Mn3O4 and AgCl Composite as a Regenerable and High-Performance Catalyst for the Oxygen Reduction Reaction”, J. Mater. Chem. A, 12(36), 2431824327(2024).
8. Wu, Y. H., Mehta, H., Willinger, E., Yuwono, J. A., Kumar, P. V., Abdala, P. M., Wach, A., Kierzkowska, A., Donat, F., Kuznetsov, D.
A. and Muller, C. R., “Altering Oxygen Binding by Redox-Inactive Metal Substitution to Control Catalytic Activity: Oxygen Reduction on Manganese Oxide Nanoparticles as a Model System”, Angew. Chem., Int. Ed., 62(8), e202217186-e202217186 (2023).
9. Gowda, C. C., Mathur, A., Parui, A., Kumbhakar, P., Pandey, P., Sharma, S., Chandra, A., Singh, A. K., Halder, A. and Tiwary, C. S., “Understanding the Electrocatalysis OER and ORR Activity of Ultrathin Spinel Mn3O4,” J. Ind. Eng. Chem., 113, 153-160(2022).
10. Shu, C., Wang, J., Long, J., Liu, H.-K. and Dou, S.-X., “Understanding the Reaction Chemistry during Charging in Aprotic Lithium–Oxygen Batteries: Existing Problems and Solutions,” Adv. Mater., 31(15), 1804587-1804587(2019).
11. Choi, W. H., Moon, B. C., Park, D. G., Choi, J. W., Kim, K.-H., Shin, J.-S., Kim, M. G., Choi, K. M. and Kang, J. K., “Autogenous Production and Stabilization of Highly Loaded Sub-Nanometric Particles within Multishell Hollow Metal–Organic Frameworks and Their Utilization for High Performance in Li–O2 Batteries,” Adv.
Sci., 7(9), 2000283-2000283(2020).
12. Kang, J.-H., Lee, J., Jung, J.-W., Park, J., Jang, T., Kim, H.-S., Nam, J. S., Lim, H., Yoon, K. R., Ryu, W.-H., Kim, I.-D. and Byon, H. R., “Lithium-Air Batteries: Air-Breathing Challenges and Perspective,” ACS Nano, 14(11), 14549-14549(2020).
13. Dutta, A., Wong, R. A., Park, W., Yamanaka, K., Ohta, T., Jung, Y.
and Byon, H. R., “Nanostructuring One-dimensional and Amorphous Lithium Peroxide for High Round-trip Efficiency in Lithiumoxygen Batteries,” Nat. Commun., 9, 680(2018).
14. Dong, Y., Li, K., Wang, G., Miao, H., Zhang, J. and Zhang, C., “Simple Hydrothermal Preparation of α-, β-, and γ-MnO2 and Phase Sensitivity in Catalytic Ozonation,” RSC Adv., 4(74), 39167-39173 (2014).
15. Jo, J. and Kim, J., “Recent Research Trend of Zinc-ion Secondary Battery Materials for Next Generation Batterie”, Ceramist, 21(4), 312-320(2018).
16. Hessien, M. A., Khattab, R. M. and Sadek, H. E. H., “Synthesis and Characterization of ZnO, Mn3O4, and ZnMn2O4 Spinel by New Chelation-Precipitation Method: Magnetic and Antimicrobial Properties,” J. Inorg. Organomet. Polym., (2024).
17. Iwasaki, S. and Koga, N., “Thermal Dehydration of Calcium Sulfate Dihydrate: Physico-geometrical Kinetic Modeling and the Influence of Self-generated Water Vapor,” Phys. Chem. Chem. Phys., 22(39), 22436-22450(2020).
18. Li, F., Wu, S., Li, D., Zhang, T., He, P., Yamada, A. and Zhou, H., “The Water Catalysis at Oxygen Cathodes of Lithium–oxygen Cells,” Nat. Commun., 6, 7843(2015).
19. Wang, X., Cai, S., Zhu, D., Mu, S. and Chen, Y., “The Investigation of Water Vapor on the Li–O2 Battery using a Solid-state Air Cathode,” J. Solid State Electrochem., 19, 2421-2429(2015).
20. Kwabi, D. G., Batcho, T. P., Feng, S., Giordano, L., Thompson, C. V. and Shao-Horn, Y., “The Effect of Water on Discharge Product Growth and Chemistry in Li–O2 Batteries,” Phys. Chem. Chem.
Phys., 18, 24944-24953(2016).

