ISSN: 0304-128X ISSN: 2233-9558
Copyright © 2025 KICHE. All rights reserved

Articles & Issues

Language
korean
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received November 22, 2024
Revised February 17, 2025
Accepted February 17, 2025
Available online May 1, 2025
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

1-phenylpropanol 수소화 분해 반응을 위한 질소가 도핑된 Pd/C 촉매의 제조

Preparation of Nitrogen Doped Pd/C Catalysts for the 1-phenylpropanol Hydrogenolysis Reaction

한국생산기술연구원 울산기술실용화본부 1부산대학교 응용화학공학부
Ulsan Technology Application Division, Korea Institute of Industrial Technology (KITECH) 1School of Chemical Engineering, Pusan National University
lms5440@kitech.re.kr
Korean Chemical Engineering Research, May 2025, 63(2), 105116
https://doi.org/10.9713/kcer.2025.63.2.105116
downloadDownload PDF

Abstract

1-페닐프로판올의 수소화 분해 반응을 통해 제조된 프로필벤젠은 더 큰 시장 규모를 형성하여 상업적 활용 가능성 이 높다. 이러한 가운데 질소가 도핑된 탄소(NC)는 물리적 및 화학적 특성이 크게 변경될 수 있어 수소화 분해 반응의 촉매 지지체로 많이 사용된다. 본 연구에서는 멜라민과 탄소의 질량 비가 질소 도핑과 촉매 활성에 미치는 영향을 확인하였다. 멜라민과 탄소의 혼합물 내 멜라민 함량을 각각 다르게 혼합 및 열처리를 하여 탄소 지지체에 질소를 도핑하였으며, 강한 정전기 흡착법으로 5 wt% Pd/NC 촉매를 제조하였다. 제조된 촉매 중, Pd/NC67 촉매는 96.1%의 1-페닐프로판올 전환율, 98.8%의 프로필벤젠 수율로 가장 활성이 높음을 확인하였다. 이는 탄소 지지체에 도핑된 질소의 양이 일정 범위까지 증가함에 따라 Pd의 분산도 및 입자 크기를 개선하고 염기점의 양이 반응 활성에 영향을 미쳐 나타난 결과임을 보여준다.

The propylbenzene (PB) produced through the hydrogenolysis of 1-phenylpropanol (PP) has the potential for significant market growth and commercial application. In this context, nitrogen-doped carbon (NC) has the capacity to alter the physical and chemical properties of a given substance, thereby rendering it a highly versatile catalyst support for hydrogenolysis reactions. In this study, we investigated the effect of the mass ratio of melamine on nitrogen doping and catalytic activity. The NC was obtained by modulating the mass ratio of melamine and calcination. Subsequently, the 5 wt% Pd/NC catalysts were fabricated using a strong electrostatic adsorption method. Among the catalysts, Pd/ NC67 exhibited the highest activity with a PP conversion rate of 96.1% and a PB yield of 98.8%. These results indicate that the incorporation of nitrogen into the carbon support, within a specific range, decreases, which subsequently influences the reaction activity. These results indicate that the incorporation of nitrogen into the carbon support within a certain range enhances the dispersion of Pd and reduces the particle size, and the amount of base point affects the reaction activity.

References

1. Jha, S. N., “Phenyl Propanol Market Growth Outlook (2023 to 2033),” Fact. MR (2023).
2. Heghe, J. V., “Global Phenylpropanol Market Insights, Forecast to 2030,” QYResearch (2024).
3. Chen, Q., Chen, D. and He, L., “Production of Ethylbenzene and Propylbenzene from Benzene Alkylation using Carbon Dioxide,” Chem. Catalysis, 2(5), 930-932(2022).
4. Meng, Q., Yan, J., Wu, R., Liu, H., Sun, Y., Wu, N., Xiang, J., Zheng, L., Zhang, J. and Han, B., “Sustainable Production of Benzene from Lignin,” Nat. Commun., 12(1), 4534(2021).
5. Yoshizaki, K., Urakawa, O. and Adachi, K., “Dielectric Study of Concentration Fluctuation in Solutions of Polystyrene,” Macromolecules, 36(7), 2349-2354(2003).
6. Romanenko, G. V., Maryunina, K. Y., Bogomyakov, A. S., Sagdeev, R. Z. and Ovcharenko, V. I., “Relationship between the Thermally Induced Reorientations of Aromatic Solvate Molecules in cu (hfac) 2–Nitroxide Breathing Crystals and the Character of the Magnetic Anomaly,” Inorg. Chem., 50(14), 6597-6609(2011).
7. https://virtuemarketresearch.com/report/propyl-benzene-market 8. Zhu, J., Wu, F., Li, M., Zhu, J., van Ommen, J. G. and Lefferts, L., “Influence of Internal Diffusion on Selective Hydrogenation of 4-Carboxybenzaldehyde Over Palladium Catalysts Supported on Carbon Nanofiber Coated Monolith,” Appl. Catal. A-Gen., 498, 222-229(2015).
9. Feng, J., Xiong, W., Ding, H. and He, B., “Hydrogenolysis of Glycerol Over Pt/C Catalyst in Combination with Alkali Metal Hydroxides,” Open Chem., 14(1), 279-286(2016).
10. Rorrer, J. E., Troyano-Valls, C., Beckham, G. T. and Román-Leshkov, Y., “Hydrogenolysis of Polypropylene and Mixed Polyolefin Plastic Waste Over Ru/C to Produce Liquid Alkanes,” ACS Sustain.
Chem. Eng., 9(35), 11661-11666(2021).
11. Chia, M., Pagán-Torres, Y. J., Hibbitts, D., Tan, Q., Pham, H. N., Datye, A. K., Neurock, M., Davis, R. J. and Dumesic, J. A., “Selective Hydrogenolysis of Polyols and Cyclic Ethers Over Bifunctional Surface Sites on Rhodium–rhenium Catalysts,” J. Am. Chem.
Soc., 133(32), 12675-12689(2011).
12. Diehl, F. and Khodakov, A. Y., “Promotion of Cobalt Fischertropsch Catalysts with Noble Metals: A Review,” Oil Gas Sci.
Technol., 64(1), 11-24(2009).
13. Menezes, W., Altmann, L., Zielasek, V., Thiel, K. and Bäumer, M., “Bimetallic Co–Pd Catalysts: Study of Preparation Methods and Their Influence on the Selective Hydrogenation of Acetylene,” J. Catal., 300, 125-135(2013).
14. Feng, J., Zhong, Y. and Dai, S., “Hydrogenolysis of α-methylbenzyl Alcohol to Ethylbenzene Over Pd/C Catalyst,” IOP Conf.
Ser.: Mater. Sci. Eng., 292(1), 012117(2018).
15. Mitra, J., Zhou, X. and Rauchfuss, T., “Pd/C-catalyzed Reactions of Hmf: Decarbonylation, Hydrogenation, and Hydrogenolysis,” Green Chem., 17(1), 307-313(2015).
16. Park, H. Y., Kim, Y. E., Jae, J. H. and Lee, M. S., “Effect of Acid Treatment on Pd/C Catalysts for Improving Selective Hydrogenation,” Clean Technol., 30(2), 145-156(2024).
17. Kim, Y. E., Lee, K.-Y. and Lee, M. S., “Morphology-dependent Wrinkled Silica-supported pd Catalysts for Hydrogenation of Furfural Under Mild Conditions,” Catal. Today, 426, 114392(2024).
18. Song, H. J., Kim, Y. E., Jae, J. and Lee, M. S., “Effect of Hcl Treatment on Acidity of Pd/TiO2 for Furfural Hydrogenation,” Catalysts, 13(12), 1481(2023).
19. Byun, M. Y., Kim, J. S., Baek, J. H., Park, D.-W. and Lee, M. S., “Liquid-phase Hydrogenation of Maleic Acid Over Pd/Al2O3 Catalysts Prepared via Deposition–precipitation Method,” Energies, 12(2), 284(2019).
20. Li, M., Xu, F., Li, H. and Wang, Y., “Nitrogen-doped Porous Carbon Materials: Promising Catalysts or Catalyst Supports for Heterogeneous Hydrogenation and Oxidation,” Catal. Sci. Technol., 6(11), 3670-3693(2016).
21. Ombaka, L. M., Ndungu, P. G. and Nyamori, V. O., “Pyrrolic Nitrogen-doped Carbon Nanotubes: Physicochemical Properties, Interactions with pd and Their Role in the Selective Hydrogenation of Nitrobenzophenone,” RSC Adv., 5(1), 109-122(2015).
22. Rangraz, Y., Heravi, M. M. and Elhampour, A., “Recent Advances on Heteroatom-doped Porous Carbon/metal Materials: Fascinating Heterogeneous Catalysts for Organic Transformations,” Chem.
Rec., 21(8), 1985-2073(2021).
23. Shang, Y., Liu, C., Zhang, Z., Wang, S., Zhao, C., Yin, X., Zhang, P., Liu, D. and Gui, J., “Insights Into the Synergistic Effect in pd Immobilized to Mof-derived Co-CoOx@N-doped Carbon for Efficient Selective Hydrogenolysis of 5-hydroxylmethylfurfural,” Ind. Eng. Chem. Res., 59(14), 6532-6542(2020).
24. Li, R., Zhao, J., Han, D. and Li, X., “One-step synthesis of Bdoped Mesoporous Carbon as Supports of Pd Nanoparticles for Liquid Phase Catalytic Hydrodechlorination,” Catal. Commun., 97, 116-119(2017).
25. Gao, R., Guo, H., Wang, B., Qiu, P., Sun, M. and Chen, L., “Co Based N, S Co-doped Carbon Hybrids for Catalytic Hydrogenation: Role of Cobalt Salt and Doped S,” Appl. Catal. A-Gen., 579, 99-105(2019).
26. Rao, R. G., Blume, R., Greiner, M. T., Liu, P., Hansen, T. W., Dreyer, K. S., Hibbitts, D. D. and Tessonnier, J.-P., “Oxygen-doped Carbon Supports Modulate the Hydrogenation Activity of Palladium Nanoparticles Through Electronic Metal–support Interactions,” ACS Catal., 12(12), 7344-7356(2022).
27. Xiong, R., Zhao, W., Wang, Z. and Zhang, M., “A Sulfur-tolerant Phosphorus Doped Pd/C Catalyst for Hydrogenation of 4nitrothioanisole,” Mol. Catal., 500, 111332(2021).
28. Mu, J., France, L. J., Liu, B., Shi, J., Long, J., Lv, L. and Li, X., “Nitrogen-doped Carbon Nanotubes as Efficient Catalysts for Isobutane Dehydrogenation,” Catal. Sci. Technol., 6(24), 85628570(2016).
29. Golub, F. S., Gerasimov, E. Y., Prosvirin, I. P., Plusnin, P. E., Bolotov, V. A., Parmon, V. N. and Bulushev, D. A., “Engineering of the n-doped Carbon Support for Improved Performance of Supported Pd Catalysts in Hydrogen Production from Gas-phase Formic Acid,” Int. J. Hydrogen Energy, 48(59), 22439-22452(2023).
30. Öztürk, A. and Yurtcan, A. B., “Preparation and Characterization of melamine-led nitrogen-doped carbon blacks at different pyrolysis temperatures,” J. Solid State Chem., 296, 121972(2021).
31. Papailias, I., Giannakopoulou, T., Todorova, N., Demotikali, D., Vaimakis, T. and Trapalis, C., “Effect of Processing Temperature on Structure and Photocatalytic Properties of g-C3N4,” Appl. Surf.
Sci., 358, 278-286(2015).
32. Zahoor, A., Christy, M., Hwang, Y. J., Lim, Y. R., Kim, P. and Nahm, K. S., “Improved Electrocatalytic Activity of Carbon Materials by Nitrogen Doping,” Appl. Catal. B-Environ., 147, 633-641(2014).
33. Liu, G., Li, X., Ganesan, P. and Popov, B. N., “Development of Non-precious Metal Oxygen-reduction Catalysts for Pem Fuel Cells Based on N-doped Ordered Porous Carbon,” Appl. Catal.
B-Environ., 93(1-2), 156-165(2009).
34. Kichambare, P., Kumar, J., Rodrigues, S. and Kumar, B., “Electrochemical Performance of Highly Mesoporous Nitrogen Doped Carbon Cathode in Lithium–oxygen Batteries,” J. Power Sources, 196(6), 3310-3316(2011).
35. Brahma, S., Ramanujam, K. and Gardas, R. L., “Nitrogen-doped High Surface Area Porous Carbon Material Derived from Biomass and Ionic Liquid for High-performance Supercapacitors,” Ind.
Eng. Chem. Res., 61(33), 12073-12082(2022).
36. Fedoseeva, Y. V., Lobiak, E. V., Shlyakhova, E. V., Kovalenko, K. A., Kuznetsova, V. R., Vorfolomeeva, A. A., Grebenkina, M. A., Nishchakova, A. D., Makarova, A. A. and Bulusheva, L. G., “Hydrothermal Activation of Porous Nitrogen-doped Carbon Materials for Electrochemical Capacitors and Sodium-ion Batteries,” Nanomaterials, 10(11), 2163(2020).
37. Kim, D. W., Kim, E.-J., Lee, C.-L. and Moon, K.-S., “Spontaneous Adsorption Effect of Graphitic Carbon Nitride Nanosheets to Improve Sintering Behavior of Yttria-stabilized Zirconia Microbeads,” Appl. Surf. Sci., 654, 159447(2024).
38. Qin, J., Shen, J., Xu, X., Yuan, Y., He, G. and Chen, H., “A Glassy Carbon Electrode Modified with Nitrogen-doped Reduced Graphene Oxide and Melamine for Ultra-sensitive Voltammetric Determination of Bisphenol a,” Microchim. Acta, 185, 1-8(2018).
39. Wang, B., Qin, Y., Tan, W., Tao, Y. and Kong, Y., “Smartly Designed 3D N-doped Mesoporous Graphene for High-performance Supercapacitor Electrodes,” Electrochim. Acta, 241, 1-9(2017).
40. Narkbuakaew, T. and Sujaridworakun, P., “Synthesis of Tri-STriazine based g-C3N4 Photocatalyst for Cationic Rhodamine B Degradation Under Visible Light,” Top. Catal., 63, 1086-1096(2020).
41. Zheng, Y., Zhang, Z. and Li, C., “A comparison of Graphitic Carbon Nitrides Synthesized from Different Precursors Through Pyrolysis,” J. Photochem. Photobiol. A-Chem.: Chemistry, 332, 32-44(2017).
42. Zhang, H., Zheng, Y. and Cui, Y., “Melamine Assisted Preparation of Nitrogen Doped Activated Carbon from Sustainable Biomass for H2 and CO2 Storage,” Int. J. Hydrogen Energy, 48(47), 17914-17922(2023).
43. Paul, D. R., Sharma, R., Nehra, S. and Sharma, A., “Effect of Calcination Temperature, ph and Catalyst Loading on Photodegradation Efficiency of urea Derived Graphitic Carbon Nitride Towards Methylene Blue Dye Solution,” RSC Adv., 9(27), 1538115391(2019).
44. Kaufman, J., Metin, S. and Saperstein, D., “Symmetry Breaking in Nitrogen-doped Amorphous Carbon: Infrared Observation of the Raman-active g and d Bands,” Phys. Rev. B, 39(18), 13053(1989).
45. Tjandra, R., Liu, W., Lim, L. and Yu, A., “Melamine Based, n-doped Carbon/reduced Graphene Oxide Composite Foam for Li-ion Hybrid Supercapacitors,” Carbon, 129, 152-158(2018).
46. Lin, Y.-P., “Functionalization of Two-dimensional Nanomaterials Based on Graphene,” Ph.D. Dissertation, Aix Marseille Université (2014).
47. Faisal, S. N., Haque, E., Noorbehesht, N., Zhang, W., Harris, A.
T., Church, T. L. and Minett, A. I., “Pyridinic and Graphitic Nitrogenrich Graphene for High-performance Supercapacitors and Metalfree Bifunctional Electrocatalysts for ORR and OER,” RSC Adv., 7(29), 17950-17958(2017).
48. Wu, Y., Wang, J., Muhammad, Y., Subhan, S., Zhang, Y., Ling, Y., Li, J., Zhao, Z. and Zhao, Z., “Pyrrolic n-enriched Carbon Fabricated from Dopamine-melamine via Fast Mechanochemical Copolymerization for Highly Selective Separation of CO2 from CO2/N2,” Chem. Eng. J., 349, 92-100(2018).
49. Xu, L., Wu, X.-C. and Zhu, J.-J., “Green Preparation and Catalytic Application of pd Nanoparticles,” Nanotechnology, 19(30), 305603(2008).
50. Nie, R., Miao, M., Du, W., Shi, J., Liu, Y. and Hou, Z., “Selective Hydrogenation of C=C Bond Over N-doped Reduced Graphene Oxides Supported pd Catalyst,” Appl. Catal. B-Environ., 180, 607-613(2016).
51. Cai, J., Bennici, S., Shen, J. and Auroux, A., “The Influence of Metal-and n-species Addition in Mesoporous Carbons on the Hydrogen Adsorption Capacity,” Mater. Chem. Phys., 161, 142152(2015).
52. Sun, S., Zhang, Y. and Li, H., “N-doped Hollow Carbon Nanospheres Anchored Pd NPs for Mild Selective Hydrodeoxygenation of Bio-models,” Fuel, 352, 128929(2023).
53. Priya, B., Kumar, A., Garg, P., Deshpande, U. and Singh, S. K., “Pd/HAP Catalyzed Synthesis of Adipic Acid from 1, 6-hexanediol Under Aerial Base-free Conditions,” ChemCatChem, 15(19), e202300863(2023).
54. Yang, Y., Li, H., Pei, S., Liu, F., Feng, W. and Zhang, Y., “Highly Efficient Co Centers Functionalized by Nitrogen-doped Carbon for the Chemical Fixation of CO2,” RSC Adv., 10(69), 4240842412(2020).
55. Geng, W., Han, H., Liu, F., Liu, X., Xiao, L. and Wu, W., “N, P, S-codoped C@nano-Mo2C as an Efficient Catalyst for High Selective Synthesis of Methanol from CO2 Hydrogenation,” J.
CO2 Util., 21, 64-71(2017).
56. Jiang, J., Li, X., Du, S., Shi, L., Jiang, P., Zhang, P., Dong, Y. and Leng, Y., “Facile Synthesis of a Highly Efficient Co/Cu@NC Catalyst for Base-free Oxidation of Alcohols to Esters,” New J. Chem., 44(19), 7780-7785(2020).
57. Zhou, S., Chen, G., Feng, X., Wang, M., Song, T., Liu, D., Lu, F.
and Qi, H., “In Situ MnOx/N-doped Carbon Aerogels from Cellulose as Monolithic and Highly Efficient Catalysts for the Upgrading of Bioderived Aldehydes,” Green Chem., 20(15), 35933603(2018).
58. Deng, C., Xu, L., Hu, K., Chen, X., Gao, R., Zhang, L., Wang, L. and Zhang, C., “Research Advances on Nitrogen-doped Carbon Materials in COx Hydrogenation,” Atmosphere, 14(10), 1510(2023).
59. Park, K., Lee, K. R., Ahn, S., Park, H., Moon, S., Yoon, S. and Jung, K.-D., “Investigating the Catalytic Deactivation of a Pd Catalyst During the Continuous Hydrogenation of CO2 Into Formate Using a Trickle-bed Reactor,” Catalysts, 14(3), 187(2024).
60. Zhou, C., Xu, W., Liu, C., Chen, X., Zhou, Z., Ma, H. and Qi, F., “N-doped Carbon–silica Composite Confined Pd Nanoparticles for Abatement of Methane Emission from Automobiles,” Top.
Catal., 62, 356-367(2019).
61. Ye, D., Leung, K. C., Niu, W., Duan, M., Li, J., Ho, P.-L., Szalay, D., Wu, T.-S., Soo, Y.-L. and Wu, S., “Active Nitrogen Sites on Nitrogen Doped Carbon for Highly Efficient Associative Ammonia Decomposition,” iScience, 27(8), (2024).
62. Chen, Z., Zhang, J., Zheng, S., Ding, J., Sun, J., Dong, M., Abbas, M., Chen, Y., Jiang, Z. and Chen, J., “The Texture Evolution of g-c3n4 Nanosheets Supported fe Catalyst During Fischertropsch Synthesis,” Mol. Catal., 444, 90-99(2018).
63. Pham, L. K. H., Kongparakul, S., Reubroycharoen, P., Ding, M., Guan, G., Vo, D.-V. N., Chanlek, N., Van, C. N. and Samart, C., “High Catalytic Activity of a Nickel Phosphide Nanocatalyst Supported on Melamine-doped Activated Carbon for Deoxygenation,” Top. Catal., 66(1), 22-33(2023).
64. Gong, W., Chen, C., Zhang, H., Zhang, Y., Zhang, Y., Wang, G.
and Zhao, H., “Highly Selective Liquid-phase Hydrogenation of Furfural Over n-doped Carbon Supported Metallic Nickel Catalyst Under Mild Conditions,” Mol. Catal., 429, 51-59(2017).
65. Carrier, A., Dean, D., Little, V. R., Vandersleen, J., Davis, B. and Jessop, P. G., “Towards an Organic Thermally Regenerative Fuel Cell for Truck Engines,” Enrgy Environ. Sci., 5(5), 7111-7123(2012).

The Korean Institute of Chemical Engineers. F5,119, Anam-ro, Seongbuk-gu, Seoul, Republic of Korea
Phone No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Chemical Engineering Research 상단으로