ISSN: 0304-128X ISSN: 2233-9558
Copyright © 2025 KICHE. All rights reserved

Articles & Issues

Language
korean
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received November 25, 2024
Revised December 26, 2024
Accepted January 7, 2025
Available online May 1, 2025
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

금속 염에 의한 콜로이달 NiO 나노 입자의 모양 조절

Shape Control of Colloidal NiO Nanoparticles by Metal Salts

중앙대학교 융합공학과 1중앙대학교 지능형반도체공학과
School of Integrative Engineering, Chung-Ang University 1Department of Intelligent Semiconductor Engineering, Chung-Ang University
Korean Chemical Engineering Research, May 2025, 63(2), 105115
https://doi.org/10.9713/kcer.2025.63.2.105115
downloadDownload PDF

Abstract

콜로이달계 무기 나노 입자는 반응 전구체의 종류, 반응 온도 및 반응 시간 등 합성 공정을 조절하여 나노 입자의 크기, 모양, 조성 및 결정 구조 등의 미세 구조 제어가 가능하다. 특히 나노 입자의 물리적, 광학적, 전기적 및 자기적 특성은 모양 및 결정 구조에 따라 결정되며 미세 구조 변화에 따라 특성을 조절할 수 있다는 장점이 있다. 본 연구에 서는 콜로이달 합성법을 통해 반응 변수를 조절하여 nickel oxide(NiO) 나노 입자의 모양 및 결정 구조를 제어하였다. 합성 공정에서 알칼리 금속을 첨가하고, 염의 종류 및 양을 조절하여 순수상의 NiO 결정 구조로 구성된 나노 입자를 제조하였으며, nanodots, nanoflowers 및 nanoplates의 모양 변화를 확인하였다. 이러한 결과를 통해 콜로이달 합성법 으로 제조된 NiO 나노 입자는 전자 소자, 에너지 저장, 전기화학적 촉매 분야에 활용할 수 있을 것으로 기대된다.

Colloidal nanoparticles can be controlled in terms of size, shape, composition and crystal structure by adjusting reaction parameters such as the type of precursor, reaction temperature, and reaction time. In particular, the physical, optical, electrical, and magnetic properties of nanoparticles are determined by their microstructures which is manipulated by changing the structural parameters of nanoparticles. In this study, the morphology and crystal structure of NiO nanoparticles were controlled by adjusting reaction parameters during the synthetic procedure. Nanoparticles composed of NiO crystal structures were synthesized by controlling the types and amounts of metal salts, and the morphological variations of nanodots, nanoflowers, and nanoplates were observed. These results suggest that NiO nanoparticles synthesized by colloidal synthesis could possess specific crystal structures and be applicable as electronic devices, energy storage, and electrochemical catalysts.

References

1. Yin, Y. and Alivisatos, A. P., “Colloidal Nanocrystal Synthesis and the Organic–inorganic Interface,” Nature, 437, 664-670(2005).
2. Baig, N., Kammakakam, I. and Falath, W., “Nanomaterials: A Review of Synthesis Methods, Properties, Recent Progress, and Challenges,” Mater. Adv., 2, 1821-1871(2021).
3. Baek, W., Chang, H., Bootharaju, M. S., Kim, J. H., Park, S. and Hyeon, T., “Recent Advances and Prospects in Colloidal Nanomaterials,” JACS Au, 1, 1849-1859(2021).
4. García de Arquer, F. P., Talapin, D. V., Klimov, V. I., Arakawa, Y., Bayer, M. and Sargent, E. H., “Semiconductor Quantum Dots: Technological Progress and Future Challenges,” Science, 373, eaaz8541(2021).
5. Wang, X., Chen, H., Chen, Y., Ma, M., Zhang, K., Li, F., Zheng, Y., Zeng, D., Wang, Q. and Shi, J., “Perfluorohexane-encapsuLated Mesoporous Silica Nanocapsules as Enhancement Agents for Highly Efficient High Intensity Focused Ultrasound (HIFU),” Adv. Mater., 6, 785-791(2012).
6. Mettenbrink, E. M., Yang, W. and Wilhelm, S., “Bioimaging with Upconversion Nanoparticles,” Adv. Photonics Res., 3, 2200098 (2022).
7. Shipway, A. N., Katz, E. and Willner, I., “Nanoparticle arrays on Surfaces for Electronic, Optical, and Sensor Applications,” ChemPhysChem, 1, 18-52(2000).
8. He, C., Wu, S., Zhao, N., Shi, C., Liu, E. and Li, J., “CarbonencapSulated Fe3O4 Nanoparticles as a High-rate Lithium Ion Battery Anode Material,” ACS Nano, 7, 4459-4469(2013).
9. Jahromi, S. P., Pandikumar, A., Goh, B. T., Lim, Y. S., Basirun, W. J., Lim, H. N. and Huang, N. M., “Influence of Particle Size on Performance of a Nickel Oxide Nanoparticle-based Supercapacitor,” RSC Adv., 5, 14010-14019(2015).
10. Peng, Z. and Yang, H., “Designer Platinum Nanoparticles: Control of Shape, Composition in Alloy, Nanostructure and Electrocatalytic Property,” Nano Today, 4, 143-164(2009).
11. Bansal, V., Li, V., O'Mullane, A. P. and Bhargava, S. K., “Shape Dependent Electrocatalytic Behaviour of Silver Nanoparticles,” CrystEngComm, 12, 4280-4286(2010).
12. Fominykh, K., Feckl, J. M., Sicklinger, J., Döblinger, M., Böcklein, S., Ziegler, J., Peter, L., Rathousky, J., Scheidt, E. W. and Bein, T., “Ultrasmall Dispersible Crystalline Nickel Oxide Nanoparticles as High-performance Catalysts for Electrochemical Water Splitting,” Adv. Funct. Mater., 24, 3123-3129(2014).
13. Gong, M., Zhou, W., Tsai, M.-C., Zhou, J., Guan, M., Lin, M.C., Zhang, B., Hu, Y., Wang, D.-Y. and Yang, J., “Nanoscale Nickel Oxide/nickel Heterostructures for Active Hydrogen Evolution Electrocatalysis,” Nat. Commun., 5, 4695(2014).
14. Fominykh, K., Chernev, P., Zaharieva, I., Sicklinger, J., Stefanic, G., Döblinger, M., Müller, A., Pokharel, A., Böcklein, S. and Scheu, C., “Iron-doped Nickel Oxide Nanocrystals as Highly Efficient Electrocatalysts for Alkaline Water Splitting,” ACS Nano, 9, 5180-5188(2015).
15. Long, H., Shi, T., Hu, H., Jiang, S., Xi, S. and Tang, Z., “Growth of Hierarchal Mesoporous NiO Nanosheets on Carbon Cloth as Binder-free Anodes for High-performance Flexible Lithium-ion Batteries,” Sci. Rep., 4, 7413(2014).
16. Khalil, A., Lalia, B. S. and Hashaikeh, R., “Nickel Oxide Nanocrystals as a Lithium-ion Battery Anode: Structure-performance Relationship,” J. Mater. Sci., 51, 6624-6638(2016).
17. Kawade, U. V., Kadam, S. R., Kulkarni, M. V. and Kale, B. B., “Synergic Effects of the Decoration of Nickel Oxide Nanoparticles on Silicon for Enhanced Electrochemical Performance in LIBs,” Nanoscale Adv., 2, 823-832(2020).
18. Cai, G., Wang, X., Cui, M., Darmawan, P., Wang, J., Eh, A. L.-S.
and Lee, P. S., “Electrochromo-supercapacitor Based on Direct Growth of NiO Nanoparticles,” Nano Energy, 12, 258-267(2015).
19. Wang, K.-C., Jeng, J.-Y., Shen, P.-S., Chang, Y.-C., Diau, E. W.-G., Tsai, C.-H., Chao, T.-Y., Hsu, H.-C., Lin, P.-Y. and Chen, P., “P-type Mesoscopic Nickel Oxide/organometallic Perovskite Heterojunction Solar Cells,” Sci. Rep., 4, 4756(2014).
20. Liu, Z., Zhu, A., Cai, F., Tao, L., Zhou, Y., Zhao, Z., Chen, Q., Cheng, Y.-B. and Zhou, H., “Nickel Oxide Nanoparticles for Efficient Hole Transport in Pin and Nip Perovskite Solar Cells,” J. Mater.
Chem. A, 5, 6597-6605(2017).
21. Etefa, H. F., Imae, T. and Yanagida, M., “Enhanced Photosensitization by Carbon Dots Co-adsorbing with Dye on p-type Semiconductor (Nickel Oxide) Solar Cells,” ACS Appl. Mater. Interfaces, 12, 18596-18608(2020).
22. Caballero, A., Hernán, L., Morales, J., González, Z., SánchezHerencia, A. and Ferrari, B., “A High-capacity Anode for Lithium Batteries Consisting of Mesoporous NiO Nanoplatelets,” Energy Fuels, 27, 5545-5551(2013).
23. Abboud, M., Haija, M. A., Bel-Hadj-Tahar, R., Mubarak, A. T., Ismail, I. and Hamdy, M. S., “Highly Ordered Mesoporous Flowerlike NiO Nanoparticles: Synthesis, Characterization and Photocatalytic Performance,” New J. Chem., 44, 3402-3411(2020).
24. Mala, N. A., Dar, M. A., Rather, M. u. D., Reshi, B. A., Sivakumar, S., Batoo, K. M. and Ahmad, Z., “Supercapacitor and Magnetic Properties of NiO and Manganese-doped NiO Nanoparticles Synthesized by Chemical Precipitation Method,” J. Mater. Sci.
Mater. Electron., 34, 505(2023).
25. Nail, B. A., Fields, J. M., Zhao, J., Wang, J., Greaney, M. J., Brutchey, R. L. and Osterloh, F. E., “Nickel Oxide Particles Catalyze Photochemical Hydrogen Evolution from Water-Nanoscaling Promotes P-Type Character and Minority Carrier Extraction,” ACS Nano, 9, 5135-5142(2015).
26. Dhas, S. D., Maldar, P. S., Patil, M. D., Nagare, A. B., Waikar, M. R., Sonkawade, R. G. and Moholkar, A. V., “Synthesis of NiO Nanoparticles for Supercapacitor Application as an Efficient Electrode Material,” Vacuum, 181, 109646(2020).
27. Alagiri, M., Ponnusamy, S. and Muthamizhchelvan, C., “Synthesis and Characterization of NiO Nanoparticles by Sol–gel Method,” J.
Mater. Sci. Mater. Electron., 23, 728-732(2012).
28. Li, Y., Afzaal, M. and O'Brien, P., “The Synthesis of Amine-capped Magnetic (Fe, Mn, Co, Ni) Oxide Nanocrystals and Their Surface Modification for Aqueous Dispersibility,” J. Mater. Chem., 16, 2175-2180(2006).
29. Liang, X., Yi, Q., Bai, S., Dai, X., Wang, X., Ye, Z., Gao, F., Zhang, F., Sun, B. and Jin, Y., “Synthesis of Unstable Colloidal Inorganic Nanocrystals Through the Introduction of a Protecting Ligand,” Nano Lett., 14, 3117-3123(2014).
30. Park, J., An, K., Hwang, Y., Park, J.-G., Noh, H.-J., Kim, J.-Y., Park, J.-H., Hwang, N.-M. and Hyeon, T., “Ultra-large-scale Syntheses of Monodisperse Nanocrystals,” Nat. Mater., 3, 891-895(2004).
31. Hyeon, T., “Chemical Synthesis of Magnetic Nanoparticles,” Chem.
Commun., 927-934(2003).
32. Dikshit, P. K., Kumar, J., Das, A. K., Sadhu, S., Sharma, S., Singh, S., Gupta, P. K. and Kim, B. S., “Green Synthesis of Metallic Nanoparticles: Applications and Limitations,” Catalysts, 11, 902(2021).
33. Whitesides, G. M. and Grzybowski, B., “Self-assembly at All Scales,” Science, 295, 2418-2421(2002).
34. Dinh, C.-T., Nguyen, T.-D., Kleitz, F. and Do, T.-O., “Shape-controlled Synthesis of Highly Crystalline Titania Nanocrystals,” ACS Nano, 3, 3737-3743(2009).
35. Gao, G., Liu, X., Shi, R., Zhou, K., Shi, Y., Ma, R., TakayamaMuromachi, E. and Qiu, G., “Shape-controlled Synthesis and Magnetic Properties of Monodisperse Fe3O4 Nanocubes,” Cryst.
Growth Des., 10, 2888-2894(2010).
36. Paik, T., Gordon, T. R., Prantner, A. M., Yun, H. and Murray, C.
B., “Designing Tripodal and Triangular Gadolinium Oxide Nanoplates and Self-assembled Nanofibrils as Potential Multimodal Bioimaging Probes,” ACS Nano, 7, 2850-2859(2013).
37. Nguyen, T.-D., “From Formation Mechanisms to Synthetic Methods Toward Shape-controlled Oxide Nanoparticles,” Nanoscale, 5, 9455-9482(2013).
38. Spackova, J., Fabra, C., Mittelette, S., Gaillard, E., Chen, C.-H., Cazals, G., Lebrun, A., Sene, S., Berthomieu, D. and Chen, K., “Unveiling the Structure and Reactivity of Fatty-acid Based (nano) Materials Thanks to Efficient and Scalable 17O and 18O-isotopic Labeling Schemes,” J. Am. Chem. Soc., 142, 21068-21081(2020).
39. Bronstein, L. M., Huang, X., Retrum, J., Schmucker, A., Pink, M., Stein, B. D. and Dragnea, B., “Influence of Iron Oleate Complex Structure on Iron Oxide Nanoparticle Formation,” Chem. Mater., 19, 3624-3632(2007).
40. Perton, F., Cotin, G., Kiefer, C., Strub, J.-M., Cianferani, S., Greneche, J.-M., Parizel, N., Heinrich, B., Pichon, B. and Mertz, D., “Iron Stearate Structures: An Original Tool for Nanoparticles Design,” Inorg. Chem., 60, 12445-12456(2021).
41. Kirkpatrick, K. M., Zhou, B. H., Bunting, P. C. and Rinehart, J.
D., “Size-Tunable Magnetite Nanoparticles from Well-Defined Iron Oleate Precursors,” Chem. Mater., 34, 8043-8053(2022).

The Korean Institute of Chemical Engineers. F5,119, Anam-ro, Seongbuk-gu, Seoul, Republic of Korea
Phone No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Chemical Engineering Research 상단으로