ISSN: 0304-128X ISSN: 2233-9558
Copyright © 2025 KICHE. All rights reserved

Articles & Issues

Language
korean
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received December 20, 2024
Revised January 13, 2025
Accepted January 23, 2025
Available online May 1, 2025
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

전해질 용액 삼상 유동층의 압력변동 신호의 웨이브렛 변환

Wavelet Transform of Pressure Fluctuations in a Three Phased Fluidized Bed with Electrolyte Solutions

우석대학교 에너지전기공학과 1한국과학기술원 생명화학공학과
Department of Energy Engineering, Woosuk University 1Department of Chemical & Biomolecular Engineering, Korea Advanced Institute of Science and Technology
Korean Chemical Engineering Research, May 2025, 63(2), 105113
https://doi.org/10.9713/kcer.2025.63.2.105113
downloadDownload PDF

Abstract

본 연구에서는 직경 0.376 m의 삼상 유동층 내에서 액상으로 전해물질(NaCl) 용액을 사용하여 압력 변동 실험을 수 행하였다. 압력변동 신호를 해석함에 있어 지역 웨이브렛 함수에 기초한 웨이브렛 변환 기법을 적용하였다. 압력 변동 신호들의 시계열 데이터들은 웨이브렛 분해, 이산 웨이브렛 변환 계수, 웨이브렛 에너지 분포 그리고 시간-스케일 표 현법으로 분석하였다. 특히 지역 웨이브렛 에너지 분포를 활용하여 전해질 물질을 포함한 삼상 유동층의 유동 특성의 차이를 규명하였으며, 이는 전해질 농도에 따라 미세 스케일 특성이 변화함을 보인다. 이로부터 웨이브렛 변환기법을 이용하여 전해질 물질을 갖는 삼상 유동 층내의 스케일 성분들을 얻을 수 있어 전해질 용액 삼상 유동층의 유동 특성을 예측하는 데 효과적인 도구임을 확인하였다.

Pressure fluctuations experiments were conducted in a three phase fluidized bed with electrolyte solution (NaCl solution) as the liquid phase. The wavelet transform based on localized wavelet functions is applicable to analysis of the fluctuating signals. The time series of pressure fluctuation signals have been analyzed through coefficients of discrete wavelet transform, wavelet decomposition, wavelet energy distribution with scale and time-scale representation. By utilizing local wavelet energy distributions, the flow characteristics in the three-phase fluidized bed with electrolyte solutions were identified, showing distinct differences in fine-scale features depending on the concentration of electrolyte solutions. Thus, this wavelet transform method enables us to obtain the scale content of local complex flow behaviors in a three phase fluidized bed with electrolyte solutions.

References

1. Sirisomboon, K., Sopamart, N. and Srisamran, T., “Effects of Excess Air and Energy Fraction on Heat Transfer for Co-firing of Eucalyptus Bark and Peanut Shell Blended Fuel in a TwinCyclonic Swirling Fluidized-Bed Combustor,” Korean Journal of Chemical Engineering, 41(5), 1343-1353(2024).
2. Peng, J., Sun, W., Han, H., Xie, L. and Xiao, Y., “Experimental and Numerical Simulation Study on the Hydrodynamic Characteristics of Spherical and Irregular-shaped Particles in a 3D LiquidFluidized Bed,” Korean J. Chem. Eng., 39(11), 3165-3176(2022).
3. Park, S. H., “Energy Dissipation Rate and Pressure Fluctuations in a Three Phase Fluidized with a Large Column Diameter,” Korean J. Chem. Eng., 21(5), 1066-1071(2004).
4. Oh, K., Seo, M., Son, H. and Kim, D., “Removal of Hydrogen Sulfide in a Three Phase Fluidized Bed Bioreactor,” Korea J.
Chem. Eng., 15(2), 177-181(1998).
5. Kim, J. S., Youn, J. M., Woo., K. J. and Kang., Y., “Soybean-Oil Leaching in a Three-Phase Fluidized Bed Extractor,” Korean Chem. Eng. Res., 38(2), 225-229(2000).
6. Sikarwar, V. S., Zhao, M., Clough, P., Yao, J., Zhong, X., Memon, M. Z., Shah, N., Anthony, E. J. and Fennel, P. S., An Overview of Advances in Biomass Gasification, Energy & Environmental Science, Published on the Web,” Energy Environ. Sci., 9, 29392977(2016).
7. Zieminski, S. A. and Whittemore, R. C., “Behavior of Gas in Aqueous Electrolyte Solutions,” Chem. Eng. Sci., 26, 509-520(1971).
8. Jamialahmadi, M. and H. Muller-Steinhagen, “Effect of Alcohol, Organic Acid and Potassium Chloride Concentration on Bubble Sze, Bubble Rise Velocity and Gas Hold-up in Bubble Columns,” Chem. Eng. J., 50, 47-56(1992).
9. Fan, L. S., Satija, S. and Wisecarver, K., “Pressure Flcutuation Measurements and Flow Regime Transitions in Gas-Liquid-Solid Fluidized Beds,” AIChE J., 32, 338(1986).
10. Kwon, H. W., Kang, Y., Kim, S. D., Yashima, M. and Fan, L. T., “Bubble-Chord Length and Pressure Fluctuations in Three-Phase Fluidized Beds,” Ind. Eng. Chem. Res., 33, 1852-1857(1994).
11. Park, S. H., “Phase Holdups and Pressure Fluctuations in Twoand Three-Phase Fluidized Beds,” MS Thesis, Korea Advanced Institute of Science and Technology(1989).
12. Park, S. H. and Kim, S. D., “Wavelet Transform Analysis of Pressure Fluctuation Signals in a Three-Phase Fluidized Bed,” Korean J. Chem. Eng., 18, 1015-1019(2001).
13. Park, S. H. and Kim, S. D., “Experimental, Statistical and Stochastic Studies of Pressure Fluctuations in a Three-phase Fluidized Bed with a Moderately Large Diameter,” Korean J. Chem.
Eng., 20(1), 121-127(2003).
14. Mallat, S., “A Wavelet Tour of Signal Processing,” Academic Press, New York, NY(1998).
15. Daubechies, I., “Orthonormal Bases of Compactly Supported Wavelets,” Communications on Pure and Applied Mathematics, 41(7), 909-996(1988).
16. Farge, M., “Wavelet Transforms and Their Applications to Turbulance,” Annu. Rev. Fluid Mech., 24, 395(1992).
17. Park, S. H., Kang, Y. and Kim, S. D., “Wavelet Transform Analysis of Pressure Flcutuation Signals in a Pressurized Bubble Column,” CES 56, 6259-6265(2001).
18. Park, S. H., Kang, Y., Cho, Y. J., Fan, L. T. and Kim, S. D., “Characterization of Pressure Signals in a Bubble Column by Wavelet Transform,” 34(2), 158-165(2001).
19. Lu, X. and Li, H., “Wavelet Anaysis of Pressure Fluctuation Signals in a Bubbling Fluidized Bed,” Chem. Eng. J., 75, 113-119(1999).
20. Ellis, N., Brens, L. A., Grace, J. R., Bi, H. T. and Lim, C. J., “Characterization of Dynamic Behaviour in Gas-Solid Turbulent Fluidized Bed using Chaos and Wavelet Analyses,” Chem. Eng.
J., 96, 105-11(2003).
21. Briens, L. A. and Ellis, N., “Hydrodynamics of Three-phase Fluidized Bed Systems Examined by Statistical, Fractal, Chaos and Wavelet Analysis Methods,” CES, 60, 6094-6106(2005).
22. Chui, C. K., “An Introduction to Wavelets Vol. 1, Wavelet Analysis and Its Applications,” Academic Press, San Diego(1992).
23. Motard, R. L. and Joseph, B., “Wavelet Applications in Chemical Engineering,” Kluwer Academic Publishers, Boston(1994).
24. Craig, V. S. J., Ninham, B. W. and Pashley, R. M., “The Effect of Electrolytes on Bubble Coalescence in Water,” J. Phys. Chem., 97, 10192-10197(1993).
25. Al Taweel, A. M., Idhbeaa, A. O. and Ghanem, A., “Effect of Electrolytes on Interphase Mass Transfer in Microbubble-sparged Airlift Reactors,” Chem. Eng. Sci., 100, 474-485(2013).
26. You, D. J., Lim, D. H., Jeon, J. S., Yang, S. W. and Kang, Y., “Bubble Properties in Bubble Columns with Electrolyte Solutions,” Korean Chem. Eng. Res., 54(4), 543-547(2016).
27. Glasgow, L. A., Erickson, L. E., Lee, C. H. and Patel, S. A., “Wall Pressure Fluctuations and Bubble Size Distributions at Several Positions in An Airlift Fermentor,” Chem. Eng. Commun., 29, 311-336(1984).
28. Marrucci, G. and Nicodemo, L., “Coalescence of Gas Bubbles in Aqueous Solutions of Inorganic Electrolytes,” Chem. Eng. Sci., 22, 1257-1265(1967).
29. Rioul, O. and Vetterli, M., “Wavelets and Signal Processing,” IEEE SP Magazine, 14-38 (1991).

The Korean Institute of Chemical Engineers. F5,119, Anam-ro, Seongbuk-gu, Seoul, Republic of Korea
Phone No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Chemical Engineering Research 상단으로