Articles & Issues
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received December 11, 2024
Revised March 7, 2025
Accepted March 24, 2025
Available online May 1, 2025
-
This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits
unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
All issues
Poly-lactic acid와 목분으로 제조한 composites의 강도 및 치수안정성에 첨가제로 사용된 편백나무 수피 및 피마자왁스의 영향
Effect of Cypress Wood Bark and Hydrogenated Castor Oil Used as an Additive on the Strengths and Dimensional Stability of Bio-composites Fabricated with Poly-lactic Acid and Wood Powder
https://doi.org/10.9713/kcer.2025.63.2.105111
Download PDF
Abstract
본 연구는 poly-lactic acid(이하 PLA)와 목분을 이용한 bio-composites 제조에 있어 첨가제로 사용된 편백나무 수피 (CYP-B)와 피마자왁스(HCO)가 강도 및 치수안정성에 미치는 영향을 조사하기 위하여 수행하였다. 충전제로 radiata pine 목분(RDP)을 사용하여 제조한 composites의 인장강도는 CYP-B의 영향을 받지 않았다. 반면 활엽수 잡목 목분 (MIX)에 CYP-B를 composites의 전체 중량 대비 2.5 wt% 첨가하여 제조한 시편의 인장강도는 증가하였으나, 5 wt%의 CYP-B를 첨가하여 제조한 시편에서는 감소하여 첨가제없이 제조한 시편과 차이가 없었다. 충격강도는 무첨가제로 제 조한 시편과 비교하여 100 mesh 표준망체를 통과한 RDP(< 0.150 mm) 및 60 mesh 표준망체 통과 HCO(< 0.250 mm)로 제조한 시편에서 높았으며, 첨가량의 증가에 따른 영향은 없었다. PLA와 RDP에 CYP-B를 첨가제로 사용하여 제조한 시편을 70℃ 온수 및 80℃ oven에 노출한 이후 측정한 중량증가율은 첨가제없이 제조한 시편과 차이가 없었으며, PLA/ MIX에서는 첨가제의 적용 및 첨가량 증가에 따른 영향도 없었다. 온수 및 고온에 노출시킨 PLA/RDP의 부피팽윤율은 무첨가제 시편과 비교하여 CYP-B를 첨가제로 사용한 시편에서 차이가 없었으나, 적은 입도의 HCO 사용은 부정적인 영향을 미쳤다. PLA/MIX의 경우, 온수-침지 시편에서는 적은 입도의 CYP-B 그리고 고온-노출 시편에서는 CYP-B와 적은 입도의 HCO를 적용한 시편에서 무첨가제로 제조한 시편과 비교하여 부피팽윤율이 낮았다. PLA에 목분의 혼합은 composites의 열안정성에 부정적인 영향을 미치나, HCO의 적용으로 기존 목재-플라스틱 복합재에서 물성 개선을 위하여 사용되는 화석연료-기반 첨가제보다 열안정성을 크게 개선시키는 것으로 조사되었다. 결과를 종합하면, PLA에 목분의 혼합으로 인하여 저하된 충격강도의 증가를 위하여 첨가제의 사용이 필요하며, PLA/RDP에 첨가제로 큰 입도의 CYPB 또는 적은 입도의 HCO 사용이 최적의 composites 제조 조건으로 생각한다. 이렇게 제조한 composites가 국립산림 과학원에서 고시한 목재-플라스틱 복합재의 충격강도(>3.0 KJ/m2) 및 수분흡수율(<8.0%) 기준을 만족하여 다양한 용 도의 생분해성 플라스틱 소재로 적용이 가능할 것으로 판단된다.
This study was conducted to investigate the effect of CYP-B and HCO used as an additive on the
mechanical strength and dimensional stability of bio-composites fabricated with PLA and wood powder. Tensile strength of the PLA-based composites fabricated with RDP (PLA/RDP), which was used as a filler, was not affected by the addition of CYP-B. On the other hand, tensile strength of the PLA-based composites made with MIX (PLA/MIX) increased with the addition of 2.5 wt% CYP-B based on the total weight of the composites. When the content of the CYP-B increased to 5 wt%, the tensile strength did not differ from one of the PLA/MIX fabricated without any additives. Impact strengths of the PLA/RDP made with the RDP of < 0.150 mm and the HCO of < 0.250 mm were higher than those
without any additives, but the increases of the RDP and HCO contents did not have an effect on the impact strength. No significant differences between the water absorption rate(WAR) of the PLA/RDP added with CYP-B as an additive (PLA/RDP/CYP-B) and PLA/RDP were found after immersed in 70℃ water for 2h and exposed in 80℃ over for 48h.
The WAR of PLA/MIX was not influenced by the application and content of the additives. The total volumetric swelling rate (TVS) of the hot water-immersed and high temperature-exposed PLA/RDP was not affected by the addition of CYP-B, but showed a negative effect in the TVS of the PLA/RDP made with the HCO of < 0.250 mm. For PLA/MIX, TVSs of the hot water-immersed specimens made with the CYP-B of < 0.150 mm as well as the high temperature-exposed specimens made with the CYP-B and the HCO of < 0.250 mm were lower than those of the specimens fabricated without any additives. The addition of wood powder in PLA had a negative effect on the thermal stability of the composites, but the stability was increased with the application of HCO as a additive compared to that of petroleum-based additives used in conventional wood-plastic composites for the improvement of various properties. In conclusion, the application of additives in the fabrication of PLA-wood-based composites is required to compensate the impact strength decreased with the use of wood powder. It is determined that the applications of CYP-B of > 0.150 mm and HCO of < 0.250 mm in the mixture of PLA and RDP is an optimal condition. The composites fabricated with the conditions satisfied the minimum requirements of impact strength (>3.0 KJ/m2) and water absorption rate (<8.0%) designated by the National Institute of Forest Science. It is thought that the composites have a potential as a raw material for the production of bio-degradable plastics.
References
Bull. Environ. Contam. Toxicol., 107, 577-584(2020).
2. You, Y., Oh, Y., Hong, S. and Choi, S., “International Trends in Development, Commercialization and Market of Bio-Plastics,” J. Clean Energy Technol., 21(3), 141-152.
3. Suryanegara, L., Nakagaito, A. N. and Yano, H., “The Effect of Crystallization of PLA on the Thermal and Mechanical Properties of Microfibrillated Cellulose-reinforced PLA Composites,” Compos. Sci. Technol., 69(7-8), 1187-1192(2009).
4. Cho, Y. B. and Cho, D., “Water Treatment Effect of Bamboo Fiber on the Mechanical Properties, Impact Strength, and Heat Deflection Temperature of Bamboo Fiber/PLA Biocomposites,” J. Adhesion and Interface, 17(3), 96-103(2016).
5. Vink, E. T. H., S. Davies, S. and Kolstad, J. J., “The Eco-profile for Current Ingeo Polylactide Production,” Ind. Biotechnol., 6, 212-224(2010),
6. Kim, B. J., “Overview of Wood Plastic Composites: Focusing on Use of Bio-based Plastics and Co-extrusion Technique,” J. Kor.
Wood Sci. Technol., 42(5), 499-509(2014).
7. Gerogiopoulos, P. and Kontou, E., “The Effect of Wood-fiber Type on the Thermomechanical Performance of a Biodegradable Polymer Matrix,” J. Appl. Polym. Sci., 132(27), 42185(2015).
8. Kariz, M., Sernek, M., Obućina, M. and Kuzman, M. K., “Effect of Wood Content in FDM Filament on Properties of 3D Printed Parts,” Mater. Today Commun., 14, 135-140(2018),
9. Tao, Y., Wang, H., Li, Z., Li, P. and Shi, S. Q., “Development and Application of Wood Flour-filled Polylactic Acid Composite Filament for 3D Printing,” Mater. Basel., 10, 339(2017).
10. Zhao, X., Tekinalp, H., Meng, X., Ker, D., Benson, B., Pu, Y., Ragauskas, A.J., Wang, Y., Li, K., Webb, E., Gardner, D. J., Anderson, J. and Ozcan, S., “Poplar as Biofiber Reinforcement in Composites for Large-Scale 3D Printing,” ACS Appl. Bio Mater., 2, 45574570(2019).
11. Kim, J., Harper, D. P. and Taylor, A. M., “Effect of Wood Species on the Mechanical and Thermal Properties of Wood-plastic Composites,” J. Appl. Polym. Sci., 112, 1378-1385(2009).
12. Ashori, A. and Nourbakhsh, A., “Characteristics of Wood-fiber Plastic Composites Made of Recycled Materials,”Waste Manag., 29, 1291-1295(2009).
13. Borysiuk, P., Boruszewski, P., Auriga, R., Danecki, L., Auriga, A., Rybak, K. and Nowacka, M., “Influence of a Bark-filler on the Properties of PLA Biocomposites,” Compos. Nanocomposites, 56, 9196-9208(2021).
14. Harper, D. P. and Eberhardt, T. L., “Evaluation of Micron-Sized Wood and Bark Particles as Filler in Thermoplastic Composites,” 10th International Conference on Wood Biofiber Plastic
Composites, 248-252(2010).
15. Yemele, M. C. N., Koubaa, A., Cloutier, A., Soulounganga, P.
and Wolcott, M., “Effect of Bark Fiber Content and Size on the Mechanical Properties of Bark/HDPE Composites,” Compos.
Part A Appl. Sci. Manuf., 41, 131-137(2010).
16. Kazemi, N. S., Kiaefar, A. and Tajvidi, M., “Effect of Bark Flour Content on the Hygroscopic Characteristics of Wood-polypropylene Composites,” J. Appl. Polym. Sci., 110, 3116-3120(2008).
17. Safdari, V., Khodadadi, H., Hosseinihashemi, S. K. and Ganjian, E., “The Effects of Poplar Bark and Wood Content on the
Mechanical Properties of Wood-polypropylene Composites,” BioResour., 6, 5180-5192(2011).
18. Yu, J. Q. and Komada, H., “Hinoki (Chamaecyparis obtusa) Bark, a Substrate with Anti-pathogen Properties that Suppress Some Root Diseases of Tomato,” Sci. Hortic., 81(1), 13-24(1999).
19. Moon, M. C., “Utilization of Cypress Bark,” Personal Communication.
20. Oyewole, O. I., Owoseni, A. A. and Faboro, E. O., “Studies on Medicinal and Toxicological Properties of Cajanus cajan, Ricinus communis and Thymus vulgaris Leaf Extracts,” Res. J. Med.
Plant, 4, 2004-2006(2010).
21. Terziev, N. and Panov, D., Plant Oils as Green Substances for Wood Protection. Minimising the Environmental Impact of the Forest Products Industries, Springer, Berlin/Heidelberg, 143-149 (2011).
22. Singh, T. and Singh, A. P., “A Review on Natural Products as Wood Protectant,”Wood Sci. Tech., 46(5), 851-870(2012).
23. Humar, M. and Lesar, B., “Efficacy of Linseed- and Tung-oi Treated Wood against Wood-decay Fungi and Water Uptake,” Int. Biodeter.
Biodegr., 85, 223-227(2013).
24. Gonzalez-Laredo, R. F., Rosales-Castro, M., Rocha-Guzman, N.
E., Gallegos-Infante, J. A., Moreno-Jimenez, M. R. and Karchesy, J. J., “Wood Preservation Using Natural Products,”Madera Bosques, 21, 63-76(2015).
25. Patachia, S. and Croitoru, C., Biopolymers for Wood Preservation.
In Biopolymers and Biotech Admixtures for Eco-Efficient
Construction Construction Materials, Elsevier, Amsterdam, 305332(2016).
26. Passialis, C. N. and Voulgaridis, E. V., “Water Repellent Efficiency of Organic Solvent Extractives from Aleppo Pine leaves and Bark Applied to Wood,” Holzforschung, 53(2), 151-155(1999).
27. Taman, A. R., Mohamed, S. Z. and Negieb, Z. R., “Effect of Addition of Petroleum Wax on Wood Pulp for Paper Making,” Res. Ind., 35(1), 52-56(1999).
28. Papadopoulos, A. N. and Hill, C. A. S., “The Sorption of Water Vapour by Anhydride Modified Softwood,”Wood Sci. Technol., 37(3-4), 221-231(2003).
29. Liu, C., Wang, S., Shi, J. and Wang, C., “Fabrication of Superhydrophobic Wood surfaces via a Solution-immersion Process,”
Appl. Surf. Sci., 258(2), 761-765(2011).
30. Scholz, G., Krause, A. and Militz, H., “Full Impregnation of Modified Wood with Wax,” Eur. J. Wood Prod., 70(1-3), 91-98(2012).
31. American Society for Testing and Materials, Standard Test Method for Tensile Properties of Plastics, ASTM International, West Conshohocken, ASTM D638-14(2022).
32. American Society for Testing and Materials, Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials, ASTM International, West Conshohocken, ASTM D790-17(2017).
33. Pérez, E., Famá, L., Pardo, S. G., Abad, M. J. and Bernal, C., “Tensile and Fracture Behaviour of PP/wood Flour Composites,” Compos. Part B: Engr., 43(7), 2795-2800(2012).
34. Golmakani, M. E., Wiczenbach, T., Malikan, M., Aliakbari, R.
and Eremeyev, V. A., “Investigation of Wood Flour Size, Aspect Ratios, and Injection Molding Temperature on Mechanical Properties of Wood Flour/Polyethylene Composites,” Materials, 14(12), 3406(2021).
35. Murayama, K., Ueno, T., Kobori, H., Kojima, Y., Suzuki, S., Aoki, K., Ito, H., Ogoe, S. and Okamoto, M., “Mechanical Properties of Wood/plastic Composites Formed Using Wood Flour Produced by Wet Ball-milling under Various Milling Times and Drying Methods,” J. Wood Sci., 65, 5(2019).
36. Chen, P. Y. S., Haygreen, J. G. and Graham, M. A., “An Evaluation of Wood/coal Pellets Made in a Laboratory Pelletizer,” For. Prod.
J., 39, 53-58(1989).
37. Liu, H. M. and Liu, Y., “Effect of Different Solvents on Cypress Liquefaction to Fuels and Characterization of Products,” BioResources, 8(4), 6211-6219(2013).
38. Terzopoulou, P., Kamperidou, V. and Lykidis, C., “Cypress Wood and Bark Residues Chemical Characterization and Utilization as Fuel Pellets Feedstock,” Forests, 13(8), 1303(2022).
39. Gu, R., Kokta, B. V., Michalkova, D., Dimzoski, B., Fortelny, I., Slouf, M. and Krulis, Z., “Characteristics of Wood–plastic Composites Reinforced with Organo-nano Clays,” J. Reinf. Plast.
Compos., 29(24), 3566-3586(2010).
40. https://tpwd.texas.gov/huntwild/wild/species/baldcypress/#:~:text= The%20bald% 20cypress%20is%20a,Spanish%20moss%20
(Tillandsia%20usneoides).
41. Gigante, V., Cinelli, P., Righetti, M. C., Sandroni, M., Polacco, G., Seggiani, M. and Lazzeri, A., “On the Use of Biobased Waxes to Tune Thermal and Mechanical Properties of Polyhydroxyalkanoates– Bran Biocomposites,” Polymers (Basel), 12(11), 2615
(2020).
42. Meng, Q. K., Hetzer, M. and Kee, D. D., “PLA/clay/wood Nanocomposites: Nanoclay Effects on Mechanical and Thermal Properties,”
J. Compos. Mater., 45(10), 1145-1158(2011).
43. Briggs, J. L., Maier, D. E., Watkins, B. A. and Behnke, K. C., “Effects of Ingredients and Processing Parameters on Pellet Quality,” Poult. Sci., 78, 1464-1471(1999).
44. Kaliyan, N. and Morey, R. V., “Factors Affecting Strength and Durability of Densified Biomass Products,” Biomass Bioenergy, 33, 337-359(2009).
45. Takatani, M., Ikeda, K., Sakamoto, K. and Okamoto, T., “Cellulose Esters as Compatibilizers in Wood/poly(lactic acid) Composite,” J. Wood Sci., 54, 54-61(2008).

