ISSN: 0304-128X ISSN: 2233-9558
Copyright © 2025 KICHE. All rights reserved

Articles & Issues

Language
korean
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received December 23, 2024
Revised December 30, 2024
Accepted January 7, 2025
Available online May 1, 2025
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

섬유소계 바이오매스의 2단 전처리를 통한 레블린산 생산

Levulinic Acid Production from Cellulosic Biomass by Two-stage Pretreatment

경기대학교 화학공학과
Department of Chemical Engineering, Kyonggi University
jskim84@kgu.ac.kr
Korean Chemical Engineering Research, May 2025, 63(2), 105109
https://doi.org/10.9713/kcer.2025.63.2.105109
downloadDownload PDF

Abstract

본 연구에서는 탈회분, 탈리그닌의 2단 전처리를 거친 왕겨 고형분의 산 촉매 전환을 통해 레블린산 생산을 최적화 하였다. 레블린산 생산 최적화를 위한 비교군으로는 글루코오스, 알파셀룰로오스, 아비셀의 산 촉매 전환을 수행하였 다. 실험은 반응 온도(160-200℃), 반응 시간(0-240 min), 촉매로 사용한 황산 농도(1.0-3.0 wt.%), 기질 대 촉매 비율 100 g/L 조건으로 오일배스 반응 시스템에서 회분식 반응기를 사용하여 수행되었다. 글루코오스의 산 전환을 통해서 는 레블린산 생산 반응 진행 양상을 확인하고 2단 전처리된 왕겨의 비교군으로는 중합체인 알파셀룰로오스와 아비셀의 산 전환을 통해 리그닌이 없는 셀룰로오스 물질의 산 전환 특성을 확인하였다. 결과적으로 2단 전처리된 왕겨의 산 전 환은 반응 온도 180℃, 황산 농도 3.0 wt.%, 그리고 반응 시간 120분에서 44.75%의 레블린산 수율을 확보하였다. 다양한 공정 조건에서 레블린산 수율의 결과값을 통해 반응표면분석법을 이용하여 반응을 최적화 하였으며, 2단 전처 리된 왕겨의 레블린산 생산에 대한 논의를 진행하였다.

This study optimized levulinic acid production through acid-catalyzed conversion of two-stage pretreated rice husk solids involving de-ashed and delignification. As comparative substrates for levulinic acid production optimization, acid-catalyzed conversions of glucose, α-cellulose, and avicel were performed. The experiments were conducted in a batch reactor using an oil bath reaction system under the conditions of reaction temperature (160-200℃), reaction time (0-240 min), sulfuric acid concentration (1.0-3.0 wt.%) as the catalyst, and a substrate-to-catalyst ratio of 100 g/L. The acid conversion of glucose was employed to observe the reaction profile of levulinic acid production, while α-cellulose and avicel were used as comparative polymers to examine the acid conversion characteristics of lignin-free cellulose materials against the two-stage pretreated rice husk. Consequently, the acid conversion of the two-stage pretreated rice husk achieved a levulinic acid yield of 44.75% under the conditions of 180 ℃ reaction temperature, 3.0 wt.% sulfuric acid concentration, and 120 min of reaction time. The results of levulinic acid yield across various process conditions were further analyzed using response surface methodology (RSM) to optimize the reaction, and a detailed discussion on levulinic acid production from the two-stage pretreated rice husk is provided.

References

1. Ibitoye, S. E., Mahamood, R. M., Jen, T., Loha C. and Akinlabi, E. T., “An Overview of Biomass Solid Fuels: Biomass Sources, Processing Methods, and Morphological and Microstructural Properties”, Journal of Bioresources and Bioproducts, 8(4), 333360(2023).
2. Vassilev, S. V., Vassileva, C. G. and Vassilev, V. S., “Advantages and Disadvantages of Composition and Properties of Biomass in Comparison with Coal: An Overview”, Fuel, 158, 330-350(2015).
3. Nahak, B. K., Preetam, S., Sharma, D., Shukla, S. K., Syvajarvi, M., Toncu, D. and Tiwari, A., “Advancements in Net-zero Pertinency of Lignocellulosic Biomass for Climate Neutral Energy Production,” Renewable and Sustainable Energy Reviews, 161, 112393 (2022).
4. Alami, A. H., Alasad, S., Ali, M. and Alshamsi, M., “Investigating Algae for CO2 Capture and Accumulation and Simultaneous Production of Biomass for Biodiesel Production”, Sci. Total Environ., 759, 143529(2021).
5. Goel, C., Mohan, S. and Dinesha, P., “CO2 Capture by Adsorption on Biomass-derived Activated Char: A Review”, Sci. Total Environ., 798, 149296(2021).
6. Liao, J. J., Latif, N. H. A., Trache, D., Brosse, N. and Hussin, M. H., “Current Advancement on the Isolation, Characterization and Application of Lignin”, Int. J. Biol. Macromol., 162, 985-1024(2020).
7. Yu, O. and Kim, K. H., “Lignin to Materials: A Focused Review on Recent Novel Lignin Applications,” Applied Sciences, 10(13), 4626(2020).
8. Shrivastava, A. and Sharma, R. K., “Lignocellulosic Biomass Based Microbial Fuel Cells: Performance and Applications”, J. Clean.
Prod., 361, 132269(2022).
9. Rodionova, M. V., Bozieva, A. M., Zharmukhamedov, S. K., Leong, Y. K., Chi-Wei, Lan, J., Veziroglu, A., Veziroglu, T. N., Tomo, T., Chang, J. and Allakhverdiev, S. I., “A Comprehensive Review on Lignocellulosic Biomass Biorefinery for Sustainable Biofuel Production”, Int. J. Hydrogen Energy, 47(3), 1481-1498(2022).
10. Shahir, S. A., Masjuki, H. H., Kalam, M. A., Imran, A., Fattah, I. M. R. and Sanjid, A., “Feasibility of Diesel-biodiesel-ethanol/ Bioethanol Blend as Existing CI Engine Fuel: An Assessment of Properties, Material Compatibility, Safety and Combustion,” Renewable and Sustainable Energy Reviews, 32, 379-395(2014).
11. Antar, M., Lyu, D., Nazari, M., Shah, A., Zhou, X. and Smith, D. L., “Biomass for a Sustainable Bioeconomy: An Overview of World Biomass Production and Utilization”, Renewable and Sustainable Energy Reviews, 139, 110691(2021).
12. Ali, F., Dawood, A., Hussain, A., Alnasir, M. H., Khan, M. A., Butt, T. M., Janjua, N. K. and Hamid, A., “Fueling the Future: Biomass Applications for Green and Sustainable Energy”, Discover Sustainability, 5(1), 156(2024).
13. Lee, R. A. and Lavoie, J., “From first-to Third-generation Biofuels: Challenges of Producing a Commodity from a Biomass of Increasing Complexity”, Animal Frontiers, 3(2), 6-11(2013).
14. Maliha, A. and Abu-Hijleh, B., “A Review on the Current Status and Post-pandemic Prospects of Third-generation Biofuels”, Energy Systems, 14(4), 1185-1216(2023).
15. Mankar, A. R., Pandey, A., Modak, A. and Pant, K. K., “Pretreatment of Lignocellulosic Biomass: A Review on Recent Advances”, Bioresour. Technol., 334, 125235(2021).
16. Hayes, D. J., Ross, J., Hayes, H. B. and Fitzpatrick, S., The biofine process: Production of Levulinic Acid, Furfural and Formic Acid From Lignocellulosic Feedstocks”.
17. Vila-Santa, A., Islam, M. A., Ferreira, F. C., Prather, K. L. J. and Mira, N. P., “Prospecting Biochemical Pathways to Implement Microbe-based Production of the New-to-nature Platform Chemical Levulinic Acid”, ACS Synth. Biol., 10(4), 724(2021).
18. Seemala, B., Haritos, V. and Tanksale, A., “Levulinic Acid as a Catalyst for the Production of 5-Hydroxymethylfurfural and Furfural from Lignocellulose Biomass,” ChemCatChem, 8(3), 640(2015).
19. Victor, A., Sharma, P., Pulidindi, I. N. and Gedanken, A., “Levulinic Acid is a Key Strategic Chemical from Biomass,” Catalysts, 12(8), (2022).
20. Lavarack, B. P., Gri, N. B. G. J. and Rodman, D., “The Acid Hydrolysis of Sugarcane Bagasse Hemicellulose to Produce Xylose, Arabinose, Glucose and Other Products”.
21. Delbecq, F., Wang, Y. and Len, C., “Conversion of Xylose, Xylan and Rice Husk Into Furfural Via Betaine and Formic Acid Mixture as Novel Homogeneous Catalyst in Biphasic System by Microwave-assisted Dehydration”, Journal of Molecular Catalysis A: Chemical, 423, 520(2016).
22. Dussan, K., Girisuta, B., Lopes, M., Leahy, J. J. and Hayes, M.
H. B., “Conversion of Hemicellulose Sugars Catalyzed by Formic Acid: Kinetics of the Dehydration of D-Xylose, L. Arabinose, and D-Glucose,” ChemSusChem, 8(8), 1411(2015).
23. Bao, Y., Du, Z., Liu, X., Liu, H., Tang, J., Qin, C., Liang, C., Huang, C. and Yao, S., “Furfural Production from Lignocellulosic Biomass: One-step and Two-step Strategies and Techno-economic Evaluation,” Green Chem., 26(11), 6318(2024).
24. Bariani, M., Boix, E., Cassella, F. and Cabrera, M. N., “Furfural Production from Rice Husks Within a Biorefinery Framework,” Biomass Conv. Bioref., 11(3), 781(2020).
25. Zhou, Q., Ding, A., Zhang, L., Wang, J., Gu, J., Wu, T. Y., Gu, X. and Zhang, L., “Furfural Production from the Lignocellulosic Agro-forestry Waste by Solvolysis Method - A Technical Review”, Fuel Processing Technology, 255 (2024).
26. Gundekari, S. and Karmee, S. K., “Catalytic Conversion of Levulinic Acid into 2-methyltetrahydrofuran: A Review”, Molecules, 29(1), (2024).
27. Food and Agriculture Organization of the United Nations. https:// www.fao.org/faostat/en/. Accessed 27 Sep. (2024).
28. Mankar, A. R., Pandey, A., Modak, A. and Pant, K. K., “Pretreatment of Lignocellulosic Biomass: A Review on Recent Advances,” Bioresour. Technol., 334, 125235(2021).
29. Chen, H., Liu, J., Chang, X., Chen, D., Xue, Y., Liu, P., Lin, H.
and Han, S., “A Review on the Pretreatment of Lignocellulose for High-value Chemicals,” Fuel Processing Technology, 160, 196(2017).
30. Kumari, D. and Singh, R., “Pretreatment of Lignocellulosic Wastes for Biofuel Production: A Critical Review”, Renewable and Sustainable Energy Reviews, 90, 877(2018).
31. Zhao, Y., Shakeel, U., Rehman, M. S. U., Li, H., Xu, X. and Xu, J., “Lignin-carbohydrate Complexes (LCCs) and Its Role in Biorefinery,” J. Clean. Prod., 253, 120076(2020).
32. Kumar, S., Sangwan, P., Dhankhar, R. M. V. and Bidra, S., “Utilization of Rice Husk and Their Ash: A Review”, Res. J. Chem.Env. Sci., 1(5), 126-129(2013).
33. Bazargan, A., Bazargan, M. and McKay, G., “Optimization of Rice Husk Pretreatment for Energy Production,” Renewable Energy, 77, 512-520(2015).
34. Park, Y. C., Kim, T. H. and Kim, J. S., “Effect of Organosolv Pretreatment on Mechanically Pretreated Biomass by Use of Concentrated Ethanol as the Solvent,” Biotechnol Bioproc E, 22(4), 431(2017).
35. Kim, T. H., Ryu, H. J. and Oh, K. K., “Improvement of Organosolv Fractionation Performance for Rice Husk Through a Low Acidcatalyzation,” Energies, 12(9) 1800(2019).
36. Jung, H. J. and Oh, K. K., “NaOH-Catalyzed Fractionation of Rice Husk Followed by Concomitant Production of Bioethanol and Furfural for Improving Profitability in Biorefinery,” Applied Sciences, 11(16), 7508(2021).
37. Ahn, H. G., Lee, J. E., Kim, H., Jung, H. J., Oh, K. K., Heo, S. H. and Kim, J. S., “Optimized Furfural Production using the Acid Catalytic Conversion of Xylan Liquor from Organosolv-fractionated Rice Husk,” Polysaccharides, 5(4), 552-566(2024).
38. Bezerra, M. A., Santelli, R. E., Oliveira, E. P., Villar, L. S. and Escaleira, L. A., “Response Surface Methodology (RSM) as a Tool for Optimization in Analytical Chemistry,” Talanta, 76(5), 965977(2008).
39. Ao, S., Gouda, S. P., Selvaraj, M., Boddula, R., Al-Qahtani, N., Mohan, S. and Rokhum, S. L., “Active Sites Engineered Biomasscarbon as a Catalyst for Biodiesel Production: Process Optimization using RSM and Life Cycle Assessment,” Energy Conversion and Management, 300, 117956(2024).
40. Taiye, M. A., Hafida, W., Kong, F. and Zhou, C., “A Review of the Use of Rice Husk Silica as a Sustainable Alternative to Traditional Silica Sources in Various Applications,” Environmental Progress & Sustainable Energy, 43(6) e14451(2024).
41. Bazargan, A., Bazargan, M. and McKay, G., “Optimization of Rice Husk Pretreatment for Energy Production,” Renewable Energy, 77, 512-520(2015).
42. Alves-Ferreira, J., Lourenco, A., Morgado, F., Duarte, L. C., Roseiro, L. B., Fernandes, M. C., Pereira, H. and Carvalheiro, F., “Delignification of Cistus ladanifer Biomass by Organosolv and Alkali Processes,” Energies, 14(4), 1127(2021).
43. Sporck, D., Reinoso, F. A. N., Rencoret, J., Gutierrez, A., Del Rio, J. C., Ferraz, A. and Milagres, A. M. F., “Xylan Extraction from Pretreated Sugarcane Bagasse using Alkaline and Enzymatic Approaches,” Biotechnology for Biofuels, 10(296), (2017).
44. Pileidis, F. D. and Titirici, M., “Levulinic Acid Biorefineries: New Challenges for Efficient Utilization of Biomass,” ChemSusChem, 9(6), 562-582(2016).
45. Wassenberg, A., Esser, T., Poller, M. J. and Albert, J., “Investigation of the Formation, Characterization, and Oxidative Catalytic Valorization of Humins,” Materials, 16(7), 2864(2023).
46. Seretis, A., Diamantopoulou, P., Thanou, I., Tzevelekidis, P., Fakas, C., Lilas, P. and Papadogianakis, G., “Recent advances in Ruthenium-catalyzed Hydrogenation Reactions of Renewable Biomass-derived Levulinic Acid in Aqueous Media,” Front. Chem., 8, (2020).
47. Liu, S., Cheng, X., Sun, S., Chen, Y., Bian, B., Liu, Y., Tong, L., Yu, H., Ni, Y. and Yu, S., “High-Yield and High-Efficiency Conversion of HMF to Levulinic Acid in a Green and Facile Catalytic Process by a Dual-Function Brønsted-Lewis Acid HScCl4 Catalyst,” ACD Omega, 6(24), (2021).
48. Liu, C., Lu, X., Yu, Z., Xiong, J., Bai, H. and Zhang, R., “Production of Levulinic Acid from Cellulose and Cellulosic Biomass in Different Catalytic Systems,” Catalysts, 10(9), 1006(2020).
49. Adeleye, O. A., Bamiro, O. A., Albalawi, D. A., Alotaibi, A. S., Iqbal, H., Sanyaolu, S., Femi-Oyewo, M. N., Sodeinde, K. O., Yahaya, Z. S., Thiripuranathar, G. and Menaa, F., “Characterizations of Alpha-Cellulose and Microcrystalline Cellulose Isolated from Cocoa Pod Husk as a Potential Pharmaceutical Excipient,” Materials, 15(17), 5992(2022).
50. Han, S., Lee, S. M. and Kim, J. S., “Kinetic Study of Glucose Conversion to 5-hydroxymethylfurfural and Levulinic Acid Catalyzed by Sulfuric Acid,” Korean Chemical Engineering Research, 60(2), 193-201(2022).

The Korean Institute of Chemical Engineers. F5,119, Anam-ro, Seongbuk-gu, Seoul, Republic of Korea
Phone No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Chemical Engineering Research 상단으로