Articles & Issues
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received November 15, 2024
Revised January 10, 2025
Accepted January 22, 2025
Available online May 1, 2025
-
This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits
unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
All issues
전기 화학적 방법을 이용한 안티몬-탄소 전극 최적화로써 카드뮴 검출능 향상 방안
Electrochemical Optimization of Antimony Nanoparticle-decorated Carbon Electrode for Improved Cadmium Detection
https://doi.org/10.9713/kcer.2025.63.2.105105
Download PDF
Abstract
본 연구에서는 중금속 모니터링을 위한 3전극 시스템 내에서 전통적인 탄소 기반 작업 전극의 감도 한계를 해결하기 위해 탄소 전극을 안티몬으로 개질했다. 안티몬의 최적 농도를 확인하기 위해 농도가 0, 1, 3, 5, 7 wt/wt%인 전구체 용액을 탄소 페이스트와 꼼꼼히 혼합한 후, 다양한 안티몬 농도로 개질된 전극에서 카드뮴 검출 효능에 대한 비교 분 석을 수행하여 안티몬 로딩이 전기화학적 감도에 미치는 영향을 확인하고자 한다. 작업 전극에 안티몬 입자의 과도한 적재는 카드뮴 이온과의 반응에 부정적인 영향을 주어서 5 wt/wt% 안티몬을 포함한 카본 전극이 최적의 감도를 보여 주었고, 이 전극은 카본 전극에 비해 2.18배 높은 감도를 달성하였다.
In the present study, to address the limitations in sensitivity of traditional carbon-based working electrodes within a three-electrode system for heavy metal monitoring, the carbon electrode was modified with antimony. To ascertain the optimal concentration of antimony, precursor solutions with concentrations of 0, 1, 3, 5, and 7 wt/wt% were meticulously blended with carbon paste. Subsequently, comparative analyses of cadmium detection efficacy were conducted across electrodes modified with varying antimony concentrations, elucidating the effects of antimony loading on electrochemical sensitivity. Excessive deposition of antimony particles onto the working electrode was found to negatively impact the reactivity with cadmium ions. Consequently, the carbon electrode modified with 5 wt/wt% antimony exhibited optimal electrochemical sensitivity. This optimized electrode configuration yielded a 2.18-fold enhancement in sensitivity relative to the unmodified carbon electrode.
References
2. Kazantzis, G., “The Acute and Chronic Effects of Heavy Metal Poisoning,” In: Vale, J. A., Meredith, T. J. (eds), Poisoning Diagnosis and Treatment, 171-175(1981).
3. Bungau, S. G., Endres, L., Negru, P. A., Bungau, A. F., Pasca, B., Radu, A.-F., Tarce, A. G., Bogdan, M. A., Behl, T., Nechifor, A. C., Hassan, S. S. U. and Tit, D. M., “Characterization of the Toxicological Impact of Heavy Metals on Human Health in Conjunction with Modern Analytical Methods,” Toxics 10, 716(2022).
4. Sobia, A., Rahila, N., Ghazala, H. R. and Syed, A. A., “Determination of Heavy Metal Contents by Atomic Absorption Spectroscopy (AAS) in Some Medicinal Plants from Pakistani and
Malaysian Origin,” Pak. J. Pharm. Sci., 28(5), 1781-1787(2015).
5. Bak, J., Jensen, J., Larsen, M. M., Pritzl, G. and Scott-Fordsmand, J., “A Heavy Metal Monitoring-programme in Denmark,” Sci.
Total Environ., 207, 179-186(1997).
6. Dulama, I. D., Radulescu, C., Chelarescu, E. D., Bucurica, I. A., Teodorescu, S., Stirbescu, R. M. and Stirbescu, N. M., “Determination of Heavy Metal Contents in Surface Water by Inductively
Coupled Plasma—Mass Spectrometry: A Case Study of Ialomita River,” Romania. Rom. J. Phys., 62(5-6), 807-815(2017).
7. Buzica, D., Gerboles, M., Borowiak, A., Trincherini, P., Passarella, R. and Pedroni, V., “Comparison of Voltammetry and Inductively Coupled Plasma-mass Spectrometry for the Determination of Heavy Metals in PM10 Airborne Particulate Matter,” Atmos. Environ., 40(25), 4703-4710(2006).
8. Sandhya, B. D. B., Tanujjal, B., Sunandan, B. and Joydeep, D., “Heavy Metal Ion Sensing in Water Using Surface Plasmon
Resonance of Metallic Nanostructures,” J. Sustain. Dev., 1(1), 111(2015).
9. Fen, Y. W. and Yunus, W. M. M., “Surface Plasmon Resonance Spectroscopy as An Alternative for Sensing Heavy Metal Ions: a Review,” Sens. Rev., 33(4), 305-314(2013).
10. Dhara, P., Kumar, R., Binetti, L., Nguyen, H. T., Alwis, L. S., Sun, T. and Grattan, K. T. V., “Optical Fiber-Based Heavy Metal Detection Using the Localized Surface Plasmon Resonance Technique,” IEEE Sens. J., 19(19), 8720-8726(2019).
11. McComb, J. Q., Rogers, C., Han, F. X. and Tchounwou, P. B., “Rapid Screening of Heavy Metals and Trace Elements in Environmental Samples Using Portable X-Ray Fluorescence Spectrometer,
A Comparative Study,” Wat. Air and Soil Poll., 225, 2169(2014).
12. De Acha, N., Elosúa, C., Corres, J. M. and Arregui, F. J., “Fluorescent Sensors for the Detection of Heavy Metal Ions in Aqueous Media,” Sensors, 19(3), 599(2019).
13. Gumpu, M. B., Sethuraman, S., Krishnan, U. M. and Rayappan, J.
B. B., “A Review on Detection of Heavy Metal Ions in Water – An Electrochemical Approach,” Sensor Actuat B-chem, 213, 515-533 (2015).
14. Toghill, K. E., Xiao, L., Wildgoose, G. G. and Compton, R. G., “Electroanalytical Determination of Cadmium(II) and Lead(II) Using and Antimony Nanoparticle Modified Boron-Doped Diamond Electrode,” Electroanalysis, 21(10), 1113-1118(2009).
15. Chen, S., Zheng, Z. Y., Fang, Y. M., Zheng, L. Q. and Sun, J. J., “High Sensitive Detection of Cd(II) and Pb(II) Based on Antimony Film Covered Pencil core Electrodes,” J. Electrochem.,
20(4), 370-376(2014).
16. Svobodova-Tesarova, E., Baldrianova, L., Stoces, M., Svancara, I, Vytras, K, Hocevar, S. B. and Ogorevc, B., “Antimony Powdermodified Carbon Paste Electrodes for Electrochemical Stripping Determination of Trace Heavy Metals,” Electrochim. Acta, 56(19), 6673-6677(2011).
17. Slavec, M., Hocevar, S. B., Baldrianova, L., Tesarova, E., Svancara, I., Ogorevc, B. and Vytras, K., “Antimony Film Microelectrode for Anodic Stripping Measurementof Cadmium(II), Lead(II) and Copper(II),” 22(14), 1619-1622(2010).
18. Vidal-Iglesias, F. J., Solla-Gullon, J., Rodes, A., Herrero, E. and Aldaz, A., “Understanding the Nernst Equation and Other Electrochemical Concepts: An Easy Experimental Approach for Students,”
J. Chem. Educ., 89(7), 936-939(2012).
19. Kim, J. K., Han, J. H. and Kim, J. H., “A Study on the O2 Plasma Etching Method of Spray-Formed SWCNT Films and Their Utilization as Electrodes for Electrochemical Sensors,” Sens., 23,
7812(2023).
20. Yoon, S. M., Kim, S. S., Chea, S. H. and Park, N. S., “An Experimental Study on the Determination of Minimum Response Concentration of Inorganic Pollutants in Tap Water,” J. Korean Soc.
Environ. Eng., 39(4), 208-213(2017).

