ISSN: 0304-128X ISSN: 2233-9558
Copyright © 2025 KICHE. All rights reserved

Articles & Issues

Language
english
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received November 12, 2024
Revised January 31, 2025
Accepted February 28, 2025
Available online May 1, 2025
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Chemically Pretreated Biomass Conversion for Biorefinery: A Review of Current Trends

Biorefinery and Process Automation Engineering Center, Department of Chemical and Process Engineering, The Sirindhorn International Thai-German Graduate School of Engineering, King Mongkut’s University of Technology North Bangkok 1Department of Chemistry, École Centrale School of Engineering, Mahindra University 2Department of Mechanical Engineering, Kalasalingam Academy of Research and Education 3Department of Chemistry, Ramaiah Institute of Technology 4Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University 5Department of Applied Science and Technology, Anna University
baraniparamasivam@gmail.com, malinee.s@tggs.kmutnb.ac.th
Korean Chemical Engineering Research, May 2025, 63(2), 145-164(20)
https://doi.org/10.9713/kcer.2025.63.2.105104
downloadDownload PDF

Abstract

The need for clean, alternative energy sources has increased due to the depletion of fossil fuel reserves and rising energy consumption. Saccharification, fermentation, and chemical pretreatment can turn lignocellulosic biomass (LCB), an affordable and renewable resource, into bioenergy potential. Chemical pretreatment is essential to convert LCB into biofuels or biochemicals in later stages. Certain upgraded pretreatments are required to improve LCB accessibility and digestion. Enhancing the hydrolysis of its carbohydrates, such as cellulose and hemicelluloses, is the inevitable of the LCB pretreatment. In order to produce bioproducts, lignocelluloses must have their refractory structure modified. Different pretreatment techniques have been developed to produce bioenergy from LCB. The most current developments in acid, alkaline, organosolv, deep eutectic solvents (DESs), and wet oxidation chemical pretreatment techniques (CPT) are reviewed and discussed. The study aims to increase our understanding of these pretreatment procedures and their potential as environmentally friendly technologies for advancing contemporary biorefineries and the future recommendations were discussed.

References

1. Kumar, R., Kim, T. H., Basak, B., Patil, S. M., Kim, H. H., Ahn, Y., Yadav, K. K., Cabral-Pinto, M. M. and Jeon, B. H., “Emerging Approaches in Lignocellulosic Biomass Pretreatment and Anaerobic Bioprocesses for Sustainable Biofuels Production,” Journal of Cleaner Production, 333, 130180(2022).
2. Ufodike, C. O., Eze, V. O., Ahmed, M. F., Oluwalowo, A., Park, J. G., Liang, Z. and Wang, H., “Investigation of Molecular and Supramolecular Assemblies of Cellulose and Lignin of Lignocellulosic Materials by Spectroscopy and Thermal Analysis,” International Journal of Biological Macromolecules, 146, 916-921 (2020).
3. Rezania, S., Oryani, B., Cho, J., Talaiekhozani, A., Sabbagh, F., Hashemi, B., Rupani, P. F. and Mohammadi, A. A., “Different Pretreatment Technologies of Lignocellulosic Biomass for Bioethanol Production: An Overview,” Energy, 199, 117457(2020).
4. Abraham, A., Mathew, A. K., Park, H., Choi, O., Sindhu, R., Parameswaran, B., Pandey, A., Park, J. H. and Sang, B. I., “RETRACTED: Pretreatment Strategies for Enhanced Biogas Production from Lignocellulosic Biomass,” Bioresource Technology, 301, 122725(2020).
5. Rajamohan, S., Gopal, A. H., Muralidharan, K. R., Huang, Z., Paramasivam, B., Ayyasamy, T., Nguyen, X. P., Le, A. T. and Hoang, A. T., “Evaluation of Oxidation Stability and Engine Behaviors Operated by Prosopis Juliflora Biodiesel/diesel Fuel Blends with Presence of Synthetic Antioxidant,” Sustainable Energy Technologies and Assessments, 52, 102086(2022).
6. Gnansounou, E., Ganti, M. S., Singh, A. and Gabrielle, B., “Systems Analysis and Life-Cycle Assessment for Energy and Environmental Sustainability”, Bioresource Technology, 317, 123988(2020).
7. Zhou, Z., Liu, D. and Zhao, X., Conversion of Lignocellulose to Biofuels and Chemicals via Sugar Platform: An Updated Review on Chemistry and Mechanisms of Acid Hydrolysis of Lignocellulose,” Renewable and Sustainable Energy Reviews, 146, 111169 (2021).
8. Saini, J. K., Kaur, A. and Mathur, A., “Strategies to Enhance Enzymatic Hydrolysis of Lignocellulosic Biomass for Biorefinery Applications: a Review,” Bioresource Technology, 360, 127517 (2022).
9. Ahmed, N., Dhar, B. R., Pramanik, B. K., Forehead, H., Price, W. E. and Hai, F. I., “A Cookbook for Bioethanol From Macroalgae: Review of Selecting and Combining Processes to Enhance Bioethanol Production,” Current Pollution Reports, 1-18(2021).
10. Mankar, A. R., Pandey, A., Modak, A. and Pant, K. K., “Pretreatment of Lignocellulosic Biomass: A Review on Recent Advances,” Bioresource Technology, 334, 125235(2021).
11. Shahbaz, M., Al-Ansari, T., Aslam, M., Khan, Z., Inayat, A., Athar, M., Naqvi, S. R., Ahmed, M. A. and McKay, G., “A State of the Art Review on Biomass Processing and Conversion Technologies to Produce Hydrogen and Its Recovery via Membrane Separation,” International Journal of Hydrogen Energy, 45(30), 15166-15195(2020).
12. Zhou, Z., Ouyang, D., Liu, D. and Zhao, X., “Oxidative Pretreatment of Lignocellulosic Biomass for Enzymatic Hydrolysis: Progress and Challenges,” Bioresource Technology, 367, 128208(2023).
13. Zhao, L., Sun, Z. F., Zhang, C. C., Nan, J., Ren, N. Q., Lee, D. J.
and Chen, C., “Advances in Pretreatment of Lignocellulosic Biomass for Bioenergy Production: Challenges and Perspectives,”
Bioresource Technology, 343, 126123(2022).
14. Chai, W. S., Bao, Y., Jin, P., Tang, G. and Zhou, L., “A Review on Ammonia, Ammonia-hydrogen and Ammonia-methane Fuels,”
Renewable and Sustainable Energy Reviews, 147, 111254(2021).
15. Sankaran, R., Cruz, R. A. P., Pakalapati, H., Show, P. L., Ling, T.
C., Chen, W. H. and Tao, Y., “Recent Advances in the Pretreatment of Microalgal and Lignocellulosic Biomass: a Comprehensive Review,” Bioresource Technology, 298, 122476(2020).
16. Beig, B., Riaz, M., Naqvi, S. R., Hassan, M., Zheng, Z., Karimi, K., Pugazhendhi, A., Atabani, A. E. and Chi, N. T. L., “Current Challenges and Innovative Developments in Pretreatment of Lignocellulosic Residues for Biofuel Production: A Review,” Fuel, 287, 119670(2021).
17. Hameed, Z., Naqvi, S. R., Naqvi, M., Ali, I., Taqvi, S. A. A., Gao, N., Hussain, S. A. and Hussain, S., “A Comprehensive Review on Thermal Coconversion of Biomass, Sludge, Coal, and Their Blends Using Thermogravimetric Analysis,” Journal of Chemistry, 2020(1), 5024369(2020).
18. Naqvi, S. R., Naqvi, M., Taqvi, S. A. A., Iqbal, F., Inayat, A., Khoja, A. H., Mehran, M. T., Ayoub, M., Shahbaz, M. and Amin, N. A.
S., “Agro-industrial Residue Gasification Feasibility in Captive Power Plants: A South-Asian Case Study,” Energy, 214, 118952 (2021).
19. Chen, W. H., Lu, C. Y., Tran, K. Q., Lin, Y. L. and Naqvi, S. R., “A New Design of Catalytic Tube Reactor for Hydrogen Production from Ethanol Steam Reforming,” Fuel, 281, 118746(2020).
20. Ahmad, E., Khan, T. S., Alam, M. I., Pant, K. K. and Haider, M.
A., “Understanding Reaction Kinetics, Deprotonation and Solvation of Brønsted Acidic Protons in Heteropolyacid Catalyzed
Synthesis of Biorenewable Alkyl Levulinates,” Chemical Engineering Journal, 400, 125916(2020).
21. Bhatia, S. K., Jagtap, S. S., Bedekar, A. A., Bhatia, R. K., Patel, A. K., Pant, D., Banu, J. R., Rao, C. V., Kim, Y. G. and Yang, Y.
H., “Recent Developments in Pretreatment Technologies on Lignocellulosic Biomass: Effect of Key Parameters, Technological
Improvements, and Challenges,” Bioresource Technology, 300, 122724(2020).
22. Tayeh, H. N. A., Azaizeh, H. and Gerchman, Y., “Circular Economy in Olive Oil Production–olive Mill Solid Waste to Ethanol and Heavy Metal Sorbent Using Microwave Pretreatment,” Waste Management, 113, 321-328(2020).
23. Jamaldheen, S. B., Kurade, M. B., Basak, B., Yoo, C. G., Oh, K.
K., Jeon, B. H. and Kim, T. H., “A Review on Physico-chemical Delignification as a Pretreatment of Lignocellulosic Biomass for Enhanced Bioconversion,” Bioresource Technology, 346, 126591 (2022).
24. Agrawal, R., Verma, A., Singhania, R. R., Varjani, S., Di Dong, C. and Patel, A. K., “Current Understanding of the Inhibition Factors and Their Mechanism of Action for the Lignocellulosic Biomass Hydrolysis,” Bioresource Technology, 332, 125042(2021).
25. Kumar, R., Kim, T. H., Basak, B., Patil, S. M., Kim, H. H., Ahn, Y., Yadav, K. K., Cabral-Pinto, M. M. and Jeon, B. H., “Emerging Approaches in Lignocellulosic Biomass Pretreatment and Anaerobic Bioprocesses for Sustainable Biofuels Production,” Journal of Cleaner Production, 333, 130180(2022).
26. Sai, B. A., Subramaniapillai, N., Mohamed, M. S. B. K. and Narayanan, A., “Optimization of Continuous Biodiesel Production from Rubber Seed Oil (RSO) Using Calcined Eggshells as Heterogeneous Catalyst,” Journal of Environmental Chemical Engineering, 8(1), 103603(2020).
27. Ganeshan, G., Shadangi, K. P. and Mohanty, K., “Degradation Kinetic Study of Pyrolysis and co-pyrolysis of Biomass with Polyethylene Terephthalate (PET) Using Coats–Redfern Method,” Journal of Thermal Analysis and Calorimetry, 131, 1803-1816 (2018).
28. Sai, B. A ., S ub ramaniapillai, N ., Mohamed, M. S . B. K . and Narayanan, A., “Optimization of Continuous Biodiesel Production from Rubber Seed Oil (RSO) Using Calcined Eggshells as Heterogeneous Catalyst,” Journal of Environmental Chemical Engineering, 8(1), 103603(2020).
29. Lim, H. Y., Tang, S. H., Chai, Y. H., Yusup, S. and Lim, M. T., “Co-pyrolysis of Plastics and Food Waste Mixture Under Flue Gas Condition for Bio-oil Production,” Sustainable Energy Technologies and Assessments, 54, 102826(2022).
30. Chen, L. Q., “Chemical Potential and Gibbs Free Energy,” Mrs Bulletin, 44(7), 520-523(2019).
31. Kumar, B., Bhardwaj, N., Agrawal, K., Chaturvedi, V. and Verma, P., “Current Perspective on Pretreatment Technologies Using Lignocellulosic Biomass: An Emerging Biorefinery Concept,” Fuel Processing Technology, 199, 106244(2020).
32. Sakthivel, R., Ramesh, K., Purnachandran, R. and Shameer, P.
M., “A Review on the Properties, Performance and Emission Aspects of the Third Generation Biodiesels,” Renewable and Sustainable Energy Reviews, 82, 2970-2992(2018).
33. Zahrina, I., Yenti, S. R., Irianty, R. S. and Utama, P. S., “Catalytic co-pyrolysis of Palm Oil Empty Fruit Bunch and Waste Tire Using Calcium Oxide Catalysts for Upgrading Bio-oil,” Materials Today: Proceedings, 87, 321-326(2023).
34. Kaur, R., Gera, P., Jha, M. K. and Bhaskar, T., “Pyrolysis Kinetics and Thermodynamic Parameters of Castor (Ricinus communis) Residue Using Thermogravimetric Analysis,” Bioresource Technology, 250, 422-428(2018).
35. Ye, Y., Guo, W., Ngo, H. H., Wei, W., Cheng, D., Bui, X. T., Hoang, N. B. and Zhang, H., “Biofuel Production for Circular Bioeconomy: Present Scenario and Future Scope,” Science of The Total Environment, 935, 172863(2024).
36. Usmani, Z., Sharma, M., Gupta, P., Karpichev, Y., Gathergood, N., Bhat, R. and Gupta, V. K., “Ionic Liquid Based Pretreatment of Lignocellulosic Biomass for Enhanced Bioconversion,” Bioresource Technology, 304, 123003(2020).
37. Monteiro, C. R., Avila, P. F., Pereira, M. A. F., Pereira, G. N., Bordignon, S. E., Zanella, E., Stambuk, B. U., de Oliveira, D., Goldbeck, R. and Poletto, P., “Hydrothermal Treatment on Depolymerization of Hemicellulose of Mango Seed Shell for the Production of Xylooligosaccharides,” Carbohydrate Polymers, 253, 117274 (2021).
38. Wang, C., Zhang, X., Liu, Q., Zhang, Q., Chen, L. and Ma, L., “A Review of Conversion of Lignocellulose Biomass to Liquid Transport Fuels by Integrated Refining Strategies,” Fuel Processing Technology, 208, 106485(2020).
39. Chen, S. and Davaritouchaee, M., “Nature-inspired Pretreatment of Lignocellulose–Perspective and Development,” Bioresource Technology, 369, 128456(2023).
40. Hu, J., Wang, Q., Wang, W., Xu, Z., Fu, J., Xu, Q., Wang, Z., Yuan, Z., Shen, F. and Qi, W., “Synthesis of a Stable Solid Acid Catalyst from Chloromethyl Polystyrene Through a Simple Sulfonation for Pretreatment of Lignocellulose in Aqueous Solution,” ChemSusChem, 14(3), 979-989(2021).
41. Ma, Y., Shen, Y. and Liu, Y., “State of the Art of Straw Treatment Technology: Challenges and Solutions Forward,” Bioresource Technology, 313, 123656(2020).
42. Pandey, A., Mankar, A. R., Ahmad, E. and Pant, K. K., “Deep Eutectic Solvents: A Greener Approach Towards Biorefineries,” In Biomass, Biofuels, Biochemicals, 193-219(2021).
43. Si, M., Sillanpää, M., Zhuo, S., Zhang, J., Liu, M., Wang, S., Gao, C., Chai, L., Zhao, F. and Shi, Y., “Phase Separation of co-solvent Promotes Multiple Bio-nanomaterials Conversion from Natural Lignocellulose,” Industrial Crops and Products, 152, 112469(2020).
44. Chen, K., Sang, J., Wang, Z., Ibrahim, U. K., Xia, W., Guo, A., Zhang, J. and Hou, D., “Production of Low-oxygenated Bio-fuels (hydrocarbons and polymethylphenols) from Lignocellulose by a Two-stage Strategy with Non-noble Metal Catalysts,” Fuel, 286, 119401(2021).
45. Montoya-Rosales, J. J., Peces, M., González-Rodríguez, L. M., Alatriste-Mondragón, F. and Villa-Gómez, D. K., “A Broad Overview Comparing a Fungal, Thermal and Acid Pre-treatment of Bean Straw in Terms of Substrate and Anaerobic Digestion Effect,” Biomass and Bioenergy, 142, 105775(2020).
46. Toghiani, J., Malekzadeh, S., Jamali, N., Afsham, N., Fallah, N., Mahboubi, A., Nasernejad, B., Taherzadeh, M. J. and Oladzad, S., “Novel Advanced Oxidation Processes (AOPs) as Lignocellulosic Biomass Pretreatment Approaches and Their Sustainability Assessment: A Review,” Current Pollution Reports, 10(2), 207246(2024).
47. Arora, A., Nandal, P., Singh, J. and Verma, M. L., “Nanobiotechnological Advancements in Lignocellulosic Biomass Pretreatment,”
Materials Science for Energy Technologies, 3, 308-318(2020).
48. Quereshi, S., Ahmad, E., Pant, K. K. and Dutta, S., “Insights Into Microwave-assisted Synthesis of 5-ethoxymethylfurfural and Ethyl Levulinate Using Tungsten Disulfide as a Catalyst, ACS Sustainable Chemistry & Engineering, 8(4), 1721-1729(2019).
49. Wang, Z., He, X., Yan, L., Wang, J., Hu, X., Sun, Q. and Zhang, H., Enhancing Enzymatic Hydrolysis of Corn Stover by Twin-screw Extrusion Pretreatment,” Industrial Crops and Products, 143, 111960(2020).
50. Ziaei-Rad, Z., Fooladi, J., Pazouki, M. and Gummadi, S. N., “Lignocellulosic Biomass Pre-treatment Using Low-cost Ionic Liquid for Bioethanol Production: An Economically Viable Method for Wheat Straw Fractionation,” Biomass and Bioenergy, 151, 106140(2021).
51. Bonfiglio, F., Cagno, M., Yamakawa, C. K. and Mussatto, S. I., “Production of Xylitol and Carotenoids from Switchgrass and Eucalyptus Globulus Hydrolysates Obtained by Intensified Steam Explosion Pretreatment,” Industrial Crops and Products, 170, 113800(2021).
52. Pan, S., Chi, Y., Zhou, L., Li, Z., Du, L. and Wei, Y., “Evaluation of Squeezing Pretreatment for Improving Methane Production from Fresh Banana Pseudo-stems,” Waste Management, 102, 900-908 (2020).
53. Liu, Y., Zheng, X., Tao, S., Hu, L., Zhang, X. and Lin, X., “Process Optimization for Deep Eutectic Solvent Pretreatment and Enzymatic Hydrolysis of Sugar Cane Bagasse for Cellulosic Ethanol Fermentation,” Renewable Energy, 177, 259-267(2021).
54. Wang, W., Tan, X., Imtiaz, M., Wang, Q., Miao, C., Yuan, Z., and Zhuang, X., “Rice Straw Pretreatment with KOH/urea for Enhancing Sugar Yield and Ethanol Production at Low Temperature,” Industrial Crops and Products, 170, 113776(2021).
55. Fonseca, B. G., Mateo, S., Roberto, I. C., Sánchez, S. and Moya, A. J., Bioconversion in Batch Bioreactor of Olive-tree Pruning Biomass Optimizing Treatments for Ethanol Production,” Biochemical Engineering Journal, 164, 107793(2020).
56. Ma, Y., Tan, W., Wang, J., Xu, J., Wang, K. and Jiang, J., “Liquefaction of Bamboo Biomass and Production of Three Fractions
Containing Aromatic Compounds,” Journal of Bioresources and Bioproducts, 5(2), 114-123(2020).
57. Zhou, M. and Tian, X., “Development of Different Pretreatments and Related Technologies for Efficient Biomass Conversion of Lignocellulose,” International Journal of Biological Macromolecules, 202, 256-268(2022).
58. Meenakshisundaram, S., Fayeulle, A., Leonard, E., Ceballos, C.
and Pauss, A., “Fiber Degradation and Carbohydrate Production by Combined Biological and Chemical/physicochemical Pretreatment Methods of Lignocellulosic Biomass–a Review,” Bioresource Technology, 331, 125053(2021).
59. Malik, K., Salama, E. S., Kim, T. H. and Li, X., “Enhanced Ethanol Production by Saccharomyces Cerevisiae Fermentation Post
Acidic and Alkali Chemical Pretreatments of Cotton Stalk Lignocellulose,” International Biodeterioration & Biodegradation,
147, 104869(2020).
60. Haldar, D. and Purkait, M. K., “A Review on the Environmentfriendly Emerging Techniques for Pretreatment of Lignocellulosic
Biomass: Mechanistic Insight and Advancements,” Chemosphere, 264, 128523(2021).
61. Woiciechowski, A. L., Neto, C. J. D., de Souza Vandenberghe, L. P., de Carvalho Neto, D. P., Sydney, A. C. N., Letti, L. A. J., Karp, S. G., Torres, L. A. Z. and Soccol, C. R., “Lignocellulosic Biomass: Acid and Alkaline Pretreatments and Their Effects on Biomass Recalcitrance–Conventional Processing and Recent Advances,” Bioresource Technology, 304, 122848(2020).
62. Oka, D., Kobayashi, K., Isobe, N., Ogawa, Y., Yokoyama, T., Kimura, S., Kim, U. J., Tokuyasu, K. and Wada, M., “Enzymatic Hydrolysis of Wood with Alkaline Treatment,” Journal of Wood Science, 59, 484-488(2013).
63. Grimaldi, M. P., Marques, M. P., Laluce, C., Cilli, E. M. and Sponchiado, S. R. P., “Evaluation of Lime and Hydrothermal Pretreatments for Efficient Enzymatic Hydrolysis of Raw Sugarcane Bagasse,” Biotechnology for Biofuels, 8, 1-14(2015).
64. Kim, J. S., Lee, Y. Y. and Kim, T. H., “A Review on Alkaline Pretreatment Technology for Bioconversion of Lignocellulosic Biomass,” Bioresource Technology, 199, 42-48(2016).
65. Modenbach, A., “Sodium Hydroxide Pretreatment of Corn Stover and Subsequent Enzymatic Hydrolysis: An Investigation of
Yields,” Kinetic Modeling and Glucose Recovery(2013).
66. Yoon, L. W., Ang, T. N., Ngoh, G. C. and Chua, A. S. M., “Regression Analysis on Ionic Liquid Pretreatment of Sugarcane Bagasse and Assessment of Structural Changes,” Biomass and Bioenergy, 36, 160-169(2012).
67. Kim, I., Rehman, M. S. U. and Han, J. I., “Enhanced Glucose Yield and Structural Characterization of Corn Stover by Sodium Carbonate Pretreatment,” Bioresource Technology, 152, 316-320 (2014).
68. Zdeb, M., Skóra, A. and Pawłowska, M., “Influence of Temperature and Reaction Time on the Efficiency of Alkaline Pretreatment of Hay Biomass,” Journal of Ecological Engineering, 22(2), (2021).
69. Mafa, M. S., Malgas, S., Bhattacharya, A., Rashamuse, K. and Pletschke, B. I., “The Effects of Alkaline Pretreatment on Agricultural Biomasses (corn cob and sweet sorghum bagasse) and Their Hydrolysis by a Termite-derived Enzyme Cocktail,” Agronomy, 10(8), 1211(2020).
70. Tsai, M. H., Lee, W. C., Kuan, W. C., Sirisansaneeyakul, S. and Savarajara, A., “Evaluation of Different Pretreatments of Napier Grass for Enzymatic Saccharification and Ethanol Production,” Energy Science & Engineering, 6(6), 683-692(2018).
71. Dinabandhu Sahoo, D. S., Ummalyma, S. B., Okram, A. K., Sukumaran, R. K., George, E. and Ashok Pandey, A. P., “Potential of Brachiaria Mutica (Para grass) for Bioethanol Production from Loktak Lake,” Bioresource Technology, 242, 133-138(2017).
72. Awoyale, A. A., Lokhat, D. and Okete, P., “Investigation of the Effects of Pretreatment on the Elemental Composition of Ash Derived from Selected Nigerian Lignocellulosic Biomass,” Scientific Reports, 11(1), 21313(2021).
73. García-Negrón, V. and Toht, M. J., “Corn Stover Pretreatment with Na2CO3 Solution from Absorption of Recovered CO2,” Fermentation, 8(11), 600(2022).
74. Mirmohamadsadeghi, S., Chen, Z. and Wan, C., “Reducing Biomass Recalcitrance via Mild Sodium Carbonate Pretreatment,”
Bioresource Technology, 209, 386-390(2016).
75. Zhao, C., Shao, Q. and Chundawat, S. P., “Recent Advances on Ammonia-based Pretreatments of Lignocellulosic Biomass,” Bioresource Technology, 298, 122446(2020).
76. Ai, P., Zhang, X., Dinamarca, C., Elsayed, M., Yu, L., Xi, J. and Mei, Z., “Different Effects of Ozone and Aqueous Ammonia in a Combined Pretreatment Method on Rice Straw and Dairy Manure Fiber for Enhancing Biomethane Production,” Bioresource Technology, 282, 275-284(2019).
77. Shi, T., Lin, J., Li, J., Zhang, Y., Jiang, C., Lv, X., Fan, Z., Xiao, W., Xu, Y. and Liu, Z., “Pre-treatment of Sugarcane Bagasse with Aqueous Ammonia–glycerol Mixtures to Enhance Enzymatic Saccharification and Recovery of Ammonia,” Bioresource Technology, 289, 121628(2019).
78. Chen, Y., Cheng, J. J. and Creamer, K. S., “Inhibition of Anaerobic Digestion Process: A Review,” Bioresource Technology, 99(10), 4044-4064(2008).
79. Gu, Y., Zhang, Y. and Zhou, X., “Effect of Ca (OH)2 Pretreatment on Extruded Rice Straw Anaerobic Digestion,” Bioresource
Technology, 196, 116-122(2015).
80. Mustafa, A. M., Li, H., Radwan, A. A., Sheng, K. and Chen, X., “Effect of Hydrothermal and Ca(OH)2 Pretreatments on Anaerobic Digestion of Sugarcane Bagasse for Biogas Production,” Bioresource Technology, 259, 54-60(2018).
81. Bharadwaj, A. S., Dev, S., Zhuang, J., Wang, Y., Yoo, C. G., Jeon, B. H., Aggarwal, S., Park, S. H. and Kim, T. H., “Review of Chemical Pretreatment of Lignocellulosic Biomass Using Low-liquid and Low-chemical Catalysts for Effective Bioconversion,” Bioresource Technology, 368, 128339(2023).
82. Cheah, W. Y., Sankaran, R., Show, P. L., Ibrahim, T., Baizura, T.
N., Chew, K. W., Culaba, A. and Chang, J. S., “Pretreatment Methods for Lignocellulosic Biofuels Production: Current Advances, Challenges and Future Prospects,” Biofuel Research Journal, 7(1), 1115-1127(2020).
83. Alayoubi, R., Mehmood, N., Husson, E., Kouzayha, A., Tabcheh, M., Chaveriat, L., Sarazin, C. and Gosselin, I., “Low Temperature Ionic Liquid Pretreatment of Lignocellulosic Biomass to Enhance Bioethanol Yield,” Renewable Energy, 145, 1808-1816 (2020).
84. Roy, R., Rahman, M. S. and Raynie, D. E., “Recent Advances of Greener Pretreatment Technologies of Lignocellulose,” Current Research in Green and Sustainable Chemistry, 3, 100035(2020).
85. Zhang, J., Zhang, X., Yang, M., Singh, S. and Cheng, G., “Transforming Lignocellulosic Biomass Into Biofuels Enabled by Ionic
Liquid Pretreatment,” Bioresource Technology, 322, 124522(2021).
86. Nakasu, P. Y. S., Ienczak, J. L., Rabelo, S. C. and Costa, A. C., “The Water Consumption of Sugarcane Bagasse Post-washing
After Protic Ionic Liquid Pretreatment and Its Impact on 2G Ethanol Production,” Industrial Crops and Products, 169, 113642
(2021).
87. Nasirpour, N., Mohammadpourfard, M. and Heris, S. Z., “Ionic Liquids: Promising Compounds for Sustainable Chemical Processes and Applications,” Chemical Engineering Research and Design, 160, 264-300(2020).
88. Brandt, A., Gräsvik, J., Hallett, J. P. and Welton, T., “Deconstruction of Lignocellulosic Biomass with Ionic Liquids,” Green Chemistry, 15(3), 550-583(2013).
89. Hasanov, I., Raud, M. and Kikas, T., “The Role of Ionic Liquids in the Lignin Separation From Lignocellulosic Biomass,” Energies, 13(18), 4864(2020).
90. Rawat, S., Kumar, A. and Bhaskar, T., “Ionic Liquids for Separation of Lignin and Transformation Into Value-added Chemicals,” Current Opinion in Green and Sustainable Chemistry, 34, 100582(2022).
91. Qasim, U., Rafiq, S., Jamil, F., Ahmed, A., Ali, T., Kers, J., Khurram, M. S., Hussain, M., Inayat, A. and Park, Y. K., “Processing of Lignocellulose in Ionic Liquids: A Cleaner and Sustainable Approach, Journal of Cleaner Production, 323, 129189(2021).
92. Taokaew, S. and Kriangkrai, W., Recent Progress in Processing Cellulose Using Ionic Liquids as Solvents,” Polysaccharides, 3(4), 671-691(2022).
93. Javed, K., Krumme, A., Krasnou, I., Mikli, V., Viirsalu, M., Plamus, T., Vassiljeva, V., Tarasova, E., Savest, N. and Mendez, J. D., “Impact of 1-butyl-3-methylimidazolium Chloride on the Electrospinning of Cellulose Acetate Nanofibers,” Journal of Macromolecular Science, Part A, 55(2), 142-147(2018).
94. Du, H. and Qian, X., “The Effects of Acetate Anion on Cellulose Dissolution and Reaction in Imidazolium Ionic Liquids,”
Carbohydrate Research, 346(13), 1985-1990(2011).
95. Xie, W., Zhou, D., Ren, Y., Tang, S., Kuang, M. and Du, S. K., 1-Butyl-3-methylimidazolium Chloride Pretreatment of Cotton Stalk and Structure Characterization,” Renewable Energy, 125, 668-674(2018).
96. Amini, E., Valls, C. and Roncero, M. B., “Ionic Liquid-assisted Bioconversion of Lignocellulosic Biomass for the Development of Value-added Products,” Journal of Cleaner Production, 326, 129275(2021).
97. Moyer, P., Smith, M. D., Abdoulmoumine, N., Chmely, S. C., Smith, J. C., Petridis, L. and Labbé, N., “Relationship Between Lignocellulosic Biomass Dissolution and Physicochemical Properties of Ionic Liquids Composed of 3-methylimidazolium Cations And Carboxylate Anions,” Physical Chemistry Chemical Physics, 20(4), 2508-2516(2018).
98. Xin, B. and Hao, J., “Imidazolium-based Ionic Liquids Grafted on Solid Surfaces,” Chemical Society Reviews, 43(20), 71717187(2014).
99. Tanzin, T., Arabi, I. I., Mohinuddin, M. and Hossain, M. I., “Ammonium-based Ionic Liquids: Synthesis, Characterization, Computational Approach, Molecular Docking Study and Phytotoxicity Assessment,” Journal of Molecular Structure, 1273, 134337 (2023).
100. Sakthivel, S. and Velusamy, S., “Effect of Ammonium Based Ionic Liquids on the Rheological Behavior of the Heavy Crude Oil for High Pressure and High Temperature Conditions,” Petroleum, 8(4), 552-566(2022).
101. Blundell, R. K. and Licence, P., “Quaternary Ammonium and Phosphonium Based Ionic Liquids: a Comparison of Common
Anions,” Physical Chemistry Chemical Physics, 16(29), 1527815288(2014).
102. Mankar, A. R., Pandey, A., Modak, A. and Pant, K. K., “Pretreatment of Lignocellulosic Biomass: A Review on Recent Advances,” Bioresource Technology, 334, 125235(2021).
103. Bailey, J., Byrne, E.L., Goodrich, P., Kavanagh, P. and SwadźbaKwaśny, M., “Protic Ionic Liquids for Sustainable Uses,” Green Chemistry, 26(3), 1092-1131(2024).
104. Mohammadi, M., Shafiei, M., Abdolmaleki, A., Karimi, K., Mikkola, J. P. and Larsson, C., “A Morpholinium Ionic Liquid for
Rice Straw Pretreatment to Enhance Ethanol Production,”
Industrial Crops and Products, 139, 111494(2019).
105. Sriariyanun, M., Kitiborwornkul, N., Tantayotai, P., Rattanaporn, K. and Show, P. L., “One-pot ionic Liquid-mediated Bioprocess for Pretreatment and Enzymatic Hydrolysis of Rice Straw with Ionic Liquid-tolerance Bacterial Cellulose,” Bioengineering, 9(1), 17(2022).
106. Srisampao, I., Pornwongthong, P., Roddecha, S., Rodiahwati, W. and Sriariyanun, M., Pretreatment Optimization of Cholinium Ionic Liquid for Maximizing Sugar Release From Rice Straw, In Proceedings of the 7th International Conference on Informatics, Environment, Energy and Applications, 169-173 (2018).
107. Wei, H. L., Wang, Y. T., Hong, Y. Y. and Zhu, M. J., “Pretreatment of Rice Straw with Recycled Ionic Liquids by Phase‐separation Process for Low‐cost Biorefinery,” Biotechnology and Applied Biochemistry, 68(4), 871-880(2021).
108. Poornejad, N., Karimi, K. and Behzad, T., “Ionic Liquid Pretreatment of Rice Straw to Enhance Saccharification and
Bioethanol Production,” Journal of Biomass to Biofuel, 1, 8-15 (2014).
109. Jose, D., Raina, N., Deepakkumar, R., Panakkal, E. J., Sriariyanun, M. and Kangsadan, T., “The Combined Effect of Inorganic
Salt and Ionic Liquid in Pretreatment on Enzymatic
Saccharification of Rice Straw,” In E3S Web of Conferences, EDP Sciences, 355, 01002(2022).
110. Jose, D., Kitiborwornkul, N., Sriariyanun, M. and Keerthi, K., “A Review on Chemical Pretreatment Methods of Lignocellulosic Biomass: Recent Advances and Progress,” Applied Science and Engineering Progress, 15(4), 6210-6210(2022).
111. Poy, H., Lladosa, E., Gabaldón, C. and Loras, S., “Optimization of Rice Straw Pretreatment with 1-ethyl-3-methylimidazolium Acetate by the Response Surface Method,” Biomass Conversion and Biorefinery, 13(13), 12057-12072(2023).
112. Sun, J., Ding, R. and Yin, J., “Pretreatment of Corn Cobs and Corn Stalks with Tetrabutyl Phosphate Hydroxide Ionic Liquid to Enhance Enzymatic Hydrolysis Process,” Biochemical Engineering Journal, 177, 108270(2022).
113. Liu, Z., Li, L., Liu, C. and Xu, A., “Pretreatment of Corn Straw Using the Alkaline Solution of Ionic Liquids,” Bioresource Technology, 260, 417-420(2018).
114. Chen, J., Xu, Q., He, F., Yue, W., Hu, G., Gan, J. and Xie, H., “Pretreatment of Corn Stover by Levulinic Acid-based Protic Ionic Liquids for Enhanced Enzymatic Hydrolysis,” ACS Sustainable Chemistry & Engineering, 10(21), 7134-7148(2022).
115. Geng, X. and Henderson, W. A., “Pretreatment of Corn Stover by Combining Ionic Liquid Dissolution with Alkali Extraction,” Biotechnology and Bioengineering, 109(1), 84-91(2012).
116. Gao, D., Zhu, Q., Liu, P., Zhou, Q., Cheng, X., Liu, L., Xu, J. and Lu, X., “Efficient Pretreatment of Corn Straw with Ionic Liquid Composite System,” Journal of Inorganic and Organometallic Polymers and Materials, 33(7), 2000-2012(2023).
117. Ziaei-Rad, Z., Pazouki, M., Fooladi, J., Azin, M., Gummadi, S.
N. and Allahverdi, A., “Investigation of a Robust Pretreatment Technique Based on Ultrasound-assisted, Cost-effective Ionic Liquid for Enhancing Saccharification and Bioethanol Production From Wheat Straw,” Scientific Reports, 13(1), 446(2023).
118. Ren, H., Zong, M. H., Wu, H. and Li, N., “Efficient Pretreatment of Wheat Straw Using Novel Renewable Cholinium Ionic
Liquids to Improve Enzymatic Saccharification,” Industrial & Engineering Chemistry Research, 55(6), 1788-1795(2016).
119. Anuchi, S. O., Campbell, K. L. S. and Hallett, J. P., “Effective Pretreatment of Lignin-rich Coconut Wastes Using a Low-cost Ionic Liquid,” Scientific Reports, 12(1), 6108(2022).
120. da Silva, A. S. A., Lee, S. H., Endo, T. and Bon, E. P., “Major Improvement in the Rate and Yield of Enzymatic Saccharification of Sugarcane Bagasse via Pretreatment with the Ionic Liquid 1ethyl-3-methylimidazolium Acetate ([Emim][Ac]),” Bioresource Technology, 102(22), 10505-10509(2011).
121. Chambon, C. L., Mkhize, T. Y., Reddy, P., Brandt-Talbot, A., Deenadayalu, N., Fennell, P. S. and Hallett, J. P., “Pretreatment of South African Sugarcane Bagasse Using a Low-cost Protic Ionic Liquid: a Comparison of Whole, Depithed, Fibrous and Pith Bagasse Fractions,” Biotechnology for Biofuels, 11, 1-16(2018).
122. Pin, T. C., Nakasu, P. Y., Mattedi, S., Rabelo, S. C. and Costa, A. C., “Screening of Protic Ionic Liquids for Sugarcane Bagasse Pretreatment,” Fuel, 235, 1506-1514(2019).
123. Ziaei-Rad, Z. and Pazouki, M., “Cost-effective Ionic Liquid Pretreatment of Poplar Wood for Biofuel Production: An Optimization Study Using Response Surface Methodology,” Industrial Crops and Products, 219, 119036(2024).
124. Wang, Y., Kim, K. H., Jeong, K., Kim, N. K. and Yoo, C. G., “Sustainable Biorefinery Processes Using Renewable Deep Eutectic Solvents,” Current Opinion in Green and Sustainable Chemistry, 27, 100396(2021).
125. Tan, Y. T., Chua, A. S. M. and Ngoh, G. C., “Deep Eutectic Solvent for Lignocellulosic Biomass Fractionation and the Subsequent Conversion to Bio-based Products–A Review,” Bioresource Technology, 297, 122522(2020).
126. Abbott, A. P., Capper, G., Davies, D. L., Rasheed, R. K. and Tambyrajah, V., “Novel Solvent Properties of Choline Chloride/ urea Mixtures,” Chemical Communications, (1), 70-71(2003).
127. Ma, C. Y., Gao, X., Peng, X. P., Gao, Y. F., Liu, J., Wen, J. L., and Yuan, T. Q., “Microwave-assisted Deep Eutectic Solvents (DES) Pretreatment of Control and Transgenic Poplars for Boosting the Lignin Valorization and Cellulose Bioconversion,” Industrial Crops and Products, 164, 113415(2021).
128. Flieger, J. and Flieger, M., “Ionic Liquids Toxicity—benefits and Threats,” International Journal of Molecular Sciences, 21(17), 6267(2020).
129. Ijardar, S. P., Singh, V. and Gardas, R. L., “Revisiting the Physicochemical Properties and Applications of Deep Eutectic Solvents,” Molecules, 27(4), 1368(2022).
130. Tan, Y. T., Chua, A. S. M. and Ngoh, G. C., “Deep Eutectic Solvent for Lignocellulosic Biomass Fractionation and the Subsequent Conversion to Bio-based Products–A Review,” Bioresource Technology, 297, 122522(2020).
131. Yan, G., Zhou, Y., Zhao, L., Wang, W., Yang, Y., Zhao, X., Chen, Y. and Yao, X., “Recycling of Deep Eutectic Solvent for Sustainable and Efficient Pretreatment of Corncob,” Industrial Crops and Products, 183, 115005(2022).
132. Maibam, P. D. and Goyal, A., “Approach to An Efficient Pretreatment Method for Rice Straw by Deep Eutectic Solvent for
High Saccharification Efficiency,” Bioresource Technology, 351, 127057(2022).
133. Fu, X., Qiao, J., Xu, Z., Xu, C. and Li, X., “Deep Eutectic Solvent Cocktail Enhanced the Pretreatment Efficiency of Lignocellulose,” Industrial Crops and Products, 210, 118040(2024).
134. Chen, Y., Ma, C., Tang, W. and He, Y. C., “Comprehensive Understanding of Enzymatic Saccharification of Betaine: Lactic Acid-pretreated Sugarcane Bagasse,” Bioresource Technology, 386, 129485(2023).
135. Chen, Z., Reznicek, W. D. and Wan, C., “Deep Eutectic Solvent Pretreatment Enabling Full Utilization of Switchgrass,” Bioresource Technology, 263, 40-48(2018).
136. McGinnis, G. D., Wilson, W. W. and Mullen, C. E., “Biomass Pretreatment with Water and High-pressure Oxygen, The Wetoxidation Process,” Industrial & Engineering Chemistry Product Research and Development, 22(2), 352-357(1983).
137. Castro, Y. A. and Agblevor, F. A., “Effect of Wet Air Oxidation on the Composition and Biomethanation of Water Hyacinth,” Biomass Conversion and Biorefinery, 12(7), 2737-2748(2022).
138. M'Arimi, M. M., Mecha, C. A., Kiprop, A. K. and Ramkat, R., “Recent Trends in Applications of Advanced Oxidation Processes (AOPs) in Bioenergy Production,” Renewable and Sustainable Energy Reviews, 121, 109669(2020).
139. Lee, J. T., Khan, M. U., Tian, H., Ee, A. W., Lim, E. Y., Dai, Y., Tong, Y. W. and Ahring, B. K., “Improving Methane Yield of Oil Palm Empty Fruit Bunches by Wet Oxidation Pretreatment: Mesophilic and Thermophilic Anaerobic Digestion Conditions and the Associated Global Warming Potential Effects,” Energy Conversion and Management, 225, 113438(2020).
140. Zhang, J., Zhou, H., Liu, D. and Zhao, X., “Pretreatment of Lignocellulosic Biomass for Efficient Enzymatic Saccharification of Cellulose. In Lignocellulosic Biomass to Liquid Biofuels,” Academic Press, 17-65(2020).
141. Yan, X., Cheng, J. R., Wang, Y. T. and Zhu, M. J., “Enhanced Lignin Removal and Enzymolysis Efficiency of Grass Waste by Hydrogen Peroxide Synergized Dilute Alkali Pretreatment,” Bioresource Technology, 301, 122756(2020).
142. Shen, X. J., Wen, J. L., Mei, Q. Q., Chen, X., Sun, D., Yuan, T.
Q. and Sun, R. C., “Facile Fractionation of Lignocelluloses by Biomass-derived Deep Eutectic Solvent (DES) Pretreatment for Cellulose Enzymatic Hydrolysis and Lignin Valorization,” Green Chemistry, 21(2), 275-283(2019).
143. Zhang, H., Zhang, J., Xie, J. and Qin, Y., “Effects of NaOHcatalyzed Organosolv Pretreatment and Surfactant on the Sugar
Production from Sugarcane Bagasse,” Bioresource Technology, 312, 123601(2020).
144. Ho, M. C. and Wu, T. Y., “Sequential Pretreatment with Alkaline Hydrogen Peroxide and Choline Chloride: Copper (II) Chloride Dihydrate–synergistic Fractionation of Oil Palm Fronds,” Bioresource Technology, 301, 122684(2020).
145. Ling, Z., Guo, Z., Huang, C., Yao, L. and Xu, F., “Deconstruction of Oriented Crystalline Cellulose by Novel Levulinic Acid Based Deep Eutectic Solvents Pretreatment for Improved Enzymatic Accessibility,” Bioresource Technology, 305, 123025 (2020).
146. Almomani, F., Bhosale, R. R., Khraisheh, M. A. M. and Shawaqfah, M., “Enhancement of Biogas Production from Agricultural Wastes via Pre-treatment with Advanced Oxidation Processes,” Fuel, 253, 964-974(2019).
147. Wang, Y., Meng, X., Jeong, K., Li, S., Leem, G., Kim, K. H., Pu, Y., Ragauskas, A. J. and Yoo, C. G., “Investigation of a Ligninbased Deep Eutectic Solvent Using p-hydroxybenzoic Acid for Efficient Woody Biomass Conversion,” ACS Sustainable Chemistry & Engineering, 8(33), 12542-12553(2020).
148. Ruan, H., Fransen, S. C., Carter, A. H., Tao, H. and Yang, B., “Selecting Winter Wheat Straw for Cellulosic Ethanol Production in the Pacific Northwest, USA,” Biomass and Bioenergy, 123, 59-69(2019).
149. Nosratpour, M. J., Karimi, K. and Sadeghi, M., “Improvement of Ethanol and Biogas Production from Sugarcane Bagasse Using Sodium Alkaline Pretreatments,” Journal of Environmental Management, 226, 329-339(2018).
150. Yuan, Z., Klinger, G. E., Nikafshar, S., Cui, Y., Fang, Z., Alherech, M., Goes, S., Anson, C., Singh, S. K., Bals, B. and Hodge, D.
B., “Effective Biomass Fractionation Through Oxygen-enhanced Alkaline–oxidative Pretreatment,” ACS Sustainable Chemistry & Engineering, 9(3), 1118-1127(2021).
151. Pin, T. C., Nakasu, P. Y., Mattedi, S., Rabelo, S. C. and Costa, A. C., “Screening of Protic Ionic Liquids for Sugarcane Bagasse Pretreatment,” Fuel, 235, 1506-1514(2019).
152. Yu, J., Xu, Z., Liu, L., Chen, S., Wang, S. and Jin, M., “Process Integration for Ethanol Production from Corn and Corn Stover as Mixed Substrates,” Bioresource Technology, 279, 10-16(2019).

The Korean Institute of Chemical Engineers. F5,119, Anam-ro, Seongbuk-gu, Seoul, Republic of Korea
Phone No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Chemical Engineering Research 상단으로