ISSN: 0304-128X ISSN: 2233-9558
Copyright © 2025 KICHE. All rights reserved

Articles & Issues

Language
english
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received May 20, 2020
Accepted August 25, 2020
Available online January 15, 2021
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Influencing Parameters on Supercritical Water Reactor Design for Phenol Oxidation

1Mechanical Engineering Department, K. N. Toosi University of Technology, 15 Pardis St., Mollasadra Ave., Tehran 1999143344, Iran 2Department of Mechanical Engineering, University of Alberta, 10-263 Donadeo Innovation Centre for Engineering, Edmonton, Alberta T6G 1H9, Canada 3Department of Civil Engineering, K. N. Toosi University of Technology, Tehran, Iran 4School of Environment, College of Engineering, University of Tehran, Iran
bazargan@kntu.ac.ir
Korean Chemical Engineering Research, February 2021, 59(1), 85-93(9)
https://doi.org/10.9713/kcer.2021.59.1.85
downloadDownload PDF

Abstract

For accurate and reliable process design for phenol oxidation in a plug flow reactor with supercritical water, modeling can be very insightful. Here, the velocity and density distribution along the reactor have been predicted by a numerical model and variations of temperature and phenol mass fraction are calculated under various flow conditions. The numerical model shows that as we proceed along the length of the reactor the temperature falls from above 430 °C to approximately 380 °C. This is because the generated heat from the exothermic reaction is less that the amount lost through the walls of the reactor. Also, along the length, the linear velocity falls to less than one-third of the initial value while the density more than doubles. This is due to the fall in temperature which results in higher density which in turn demands a lower velocity to satisfy the continuity equation. Having a higher oxygen concentration at the reactor inlet leads to much faster phenol destruction; this leads to lower capital costs (shorter reactor will be required); however, the operational expenditures will increase for supplying the needed oxygen. The phenol destruction depends heavily on the kinetic parameters and can be as high as 99.9%. Using different kinetic parameters is shown to significantly influence the predicted distributions inside the reactor and final phenol conversion. These results demonstrate the importance of selecting kinetic parameters carefully particularly when these predictions are used for reactor design.

References

Kritzer P, Dinjus E, Chem. Eng. J., 83(3), 207 (2001)
Paradowska M, an experimental study., Universitat Rovira i Virgili, Tarragona(2004).
Tester JW, Cline JA, Corrosion, 55(11), 1088 (1999)
Bermejo MD, Cocero MJ, AIChE J., 52(11), 3933 (2006)
Mylapilli SVP, Reddy SN, J. Environ. Chem. Eng., 7(3), 103165 (2019)
Yang B, Shen Z, Cheng Z, Ji W, Chemosphere, 188, 642 (2017)
Zhang J, Wang S, Li Y, Lu J, Chen S, Lou X, Environ. Technol., 38(15), 1949 (2017)
Yang B, Cheng Z, Fan M, Jia J, Yuan T, Shen Z, Chemosphere, 205, 426 (2018)
Chen Z, Chen ZL, Yin FJ, Wang GW, Chen HZ, He CL, Xu YJ, J. Hazard. Mater., 332, 205 (2017)
Silva CL, Ravinder K, Garlapalli RK, Trembly JP, J. Environ. Chem. Eng., 5(1), 488 (2017)
Qian LL, Wang SZ, Xu DH, Guo Y, Tang XY, Wang LF, Bioresour. Technol., 176, 218 (2015)
Dong X, Zhang Y, Xu Y, Zhang M, RSC Adv., 5(59), 47488 (2015)
Gong YM, Guo Y, Sheehan JD, Chen ZF, Wang SZ, Chem. Eng. J., 331, 578 (2018)
Gong Y, Gou Y, Wan S, Song W, Xu D, Water Res., 100, 116 (2016)
Fourcault A, Jarana BG, Onento JS, Marias F, Portela JR, Water ReChem. Eng. J., 152(1), 227 (2009)
Ghoreishi SM, Mortazavi SSM, Hedayati A, Chem. Prod. Process. Model., 10(4), 243 (2015)
Bazargan M, Fraser D, J. Heat. Trans., 131(6), 61702 (2009)
Mohseni M, Bazargan M, J. Heat. Trans., 133(7), 71701 (2011)
Koo M, Lee WK, Lee CH, Chem. Eng. Sci., 52(7), 1201 (1997)
Perez IV, Rogak S, Branion R, J. Supercrit. Fluids, 30(1), 71 (2004)
Yermakova A, Mikenin PE, Anikeev VI, Theory Found. Chem. Eng., 40(2), 168 (2006)
Dong XQ, Gan ZD, Lu XL, Jin WZ, Yu YZ, Zhang MH, Chem. Eng. J., 277, 30 (2015)
Ma GQ, Zou M, Asian Journal of Chemistry, 27(5), 1695 (2015)
Vielcazals S, Mercadier J, Marias F, Mateos D, Bottreau M, Cansell F, Marraud C, AIChE J., 52(2), 818 (2006)
Zhou N, Krishnan A, Vogel F, Peters WA, Adv. Environ. Res., 4(1), 75 (2000)
Lemmon E, Huber M, McLinden M, NIST Standard Reference Satabase, 23(2002).
Krajnc M, Levec J, AIChE J., 42(7), 1977 (1996)
Portela JR, Nebot E, de la Ossa EM, Chem. Eng. J., 81(1-3), 287 (2001)
Eckenfelder WW, Roth JA, Bowers AR, Chemical Oxidation: Technology for the Nineties, CRC Press, Tennessee (1993).
Thornton TD, Savage PE, AIChE J., 38(3), 321 (1992)
Wang SZ, Guo Y, Wang LA, Wang YZ, Xu DH, Ma HH, Fuel Process. Technol., 92(3), 291 (2011)
Yu JL, Savage PE, Appl. Catal. B: Environ., 28(3-4), 275 (2000)
Gopalan S, Savage PE, AIChE. J., 41(8), 1864 (1995)
Guo Y, Wang SZ, Xu DH, Gong YM, Ma HH, Tang XY, Renew. Sust. Energ. Rev., 14, 334 (2010)
Kalaga A, Trebble M, J. Chem. Eng. Data, 44, 1063 (1999)
Poling BE, Prausnitz JM, O'connell JP, “The Properties of Gases and Liquids,” McGraw-Hill, New York, NY(2001).
Uchida H, Usui I, Fuchita A, Matsuoka M, J. Chem. Eng. Data, 49(6), 1560 (2004)
Klauck M, Grenner A, Taubert K, Martin A, Meinhardt R, Schmelzer J, Ind. Eng. Chem. Res., 47(15), 5119 (2008)
Ghizellaoui S, Meniai AH, Desalination, 185(1-3), 457 (2005)
Akiya N, Savage PE, Chem. Rev., 102(8), 2725 (2002)
Henrikson JT, Chen Z, Savage PE, Ind. Eng. Chem. Res., 42(25), 6303 (2003)

The Korean Institute of Chemical Engineers. F5,119, Anam-ro, Seongbuk-gu, Seoul, Republic of Korea
Phone No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Chemical Engineering Research 상단으로