Articles & Issues
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received February 28, 2019
Accepted March 27, 2019
Available online June 3, 2019
-
This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits
unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
용액 코팅법을 통한 연료전지용 불소계 전해질 강화복합막의 특성에 미치는 분산용매의 영향
Effect of Dispersion Solvent on Properties of Fluorinated Polymer Reinforced Composite Membrane for Fuel Cell by Solution Coating Method
Seung Ho Yook1 2
Ki Ro Yoon3
Jihun Choi1
Ju Sung Lee1
Jong Min Kim1
Seung Woo Lee4
Kwan-Young Lee2
Jin Young Kim1†
1한국과학기술연구원 수소·연료전지연구단, 02792 서울특별시 성북구 화랑로 14길 5 2고려대학교 화공생명공학과, 02841 서울특별시 성북구 안암로 145 3한국생산기술연구원 산업용섬유그룹, 15588 경기도 안산시 상록구 항가울로 143 4조지아공과대학 기계공학과, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
1Center for Hydrogen & Fuel Cell Research, Korea Institute of Science and Technology (KIST), 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Korea 2Department of Chemical & Biological Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, 02841, Korea 3Technical Textile and Materials R&D Group, Korea Institute of Industrial Technology (KITECH), 143, Hanggaul-ro, Sangnok-gu, Ansan-si, Gyeonggi-do, 15588, Korea 4Georgia Institute of Technology, Atlanta, Georgia 30332, United States, USA
Korean Chemical Engineering Research, June 2019, 57(3), 413-419(7)
https://doi.org/10.9713/kcer.2019.57.3.413
https://doi.org/10.9713/kcer.2019.57.3.413
Download PDF
Abstract
최근 화석연료기반에서 친환경 수소 기반의 청정에너지원으로 전환되는 세계적 흐름에 따라, 수소연료전지의 고성능 저가격 핵심 소재 기술 개발에 많은 관심이 이루어지고 있다. 그 가운데 연료전지의 전해질로 사용되는 강화복합막의 기술 도입은 과불소계 술폰산 이오노머(Perfluorosulfonic acid, PFSA) 양의 감소 및 막 두께 감소를 통한 가격 저감 및 셀 저항 감소, 치수 안정성 개선 그리고 계면 안정성에 대한 확보가 가능하여 최종적으로 연료전지 성능 향상과 가격 절감이 동시에 가능하다. 본 연구에서는 연료전지용 불소계 전해질 강화복합막 코팅 공정에서 이오노머 분산용매에 따라 막 형성 및 물성 변화와 연료전지 성능에 미치는 영향에 대해 연구하였다.
In the recent, as a world demand of energy resources has been transformed from fossil fuels to hydrogenbased clean energy resources, a huge attention has been attracted to increase the performance and decrease a production cost of core materials in fuel cell technology. The utilization of reinforced composite membranes as electrolytes in the polymer electrolyte membrane fuel cells can reduce the use of high cost perfluorosulfonic acid (PFSA), mitigate the cell impedance, and improve the dimensional stability as well as the interfacial stability, giving rise to achieve both an improved performance and a reduction of production costs of the fuel cell devices. In this study, we investigate the effects of physical characteris tics and cell performances according to the various ionomer solvents in the solution based manufacturing process of reinforced composite electrolyte membrane.
Keywords
References
Peighambardoust SJ, Rowshanzamir S, Amjadi M, Int. J. Hydrog. Energy, 35(17), 9349 (2010)
Wang SY, Jiang SP, Natl. Sci. Rev., 4(2), 163 (2017)
Whittingham MS, Savinell RF, Zawodzinski T, Chem. Rev., 104, 4243 (2014)
Ahmet K, Adam ZW, Chem. Rev., 117, 987 (2017)
Ameduri B, Chem. Eur. J., 24(71), 18830 (2018)
Nouel KM, Fedkiw PS, Electrochim. Acta, 43(16-17), 2381 (1998)
Yamaguchi T, Miyata F, Nakao S, Adv. Mater., 15(14), 1198 (2003)
Liu FQ, Yi BL, Xing DM, Yu JR, Zhang HM, J. Membr. Sci., 212(1-2), 213 (2003)
Mohammad EZ, Fereidoon M, Ahmad R, Iran. Polym. J., 25(7), 589 (2016)
Dai JC, Teng XG, Song YQ, Ren J, J. Membr. Sci., 522, 56 (2017)
Ma CH, Yu TL, Lin HL, Huang YT, Chen YL, Jeng US, Lai YH, Sun YS, Polymer, 50(7), 1764 (2009)
Yeo RS, Polymer, 21(4), 432 (1980)
Wang Z, Tang HL, Li JR, Zeng Y, Chen LT, Pan M, J. Power Sources, 256, 383 (2014)
Ghahremani H, Moradi A, Abedini-Torghabeh J, Hassani SM, Der Chemica Sinica, 2(6), 212 (2011)
Vazquez G, Alvarez E, Navaza JM, J. Chem. Eng. Data, 40(3), 611 (1995)
Kreuer KD, Rabenau A, Weppner W, Angew. Chem.-Int. Edit., 21(3), 208 (1982)
Ludvigsson M, Lindgren J, Tegenfeldt J, J. Electrochem. Soc., 147(4), 1303 (2000)
Wang Z, Tang HL, Li JR, Zeng Y, Chen LT, Pan M, J. Power Sources, 256, 383 (2014)
Zhang WJ, Kish DL, Pintauro PN, ECS. Trans., 33(1), 635 (2010)
Baik KD, Hong BK, Kim MS, Renew. Energy, 57, 234 (2013)
Wang SY, Jiang SP, Natl. Sci. Rev., 4(2), 163 (2017)
Whittingham MS, Savinell RF, Zawodzinski T, Chem. Rev., 104, 4243 (2014)
Ahmet K, Adam ZW, Chem. Rev., 117, 987 (2017)
Ameduri B, Chem. Eur. J., 24(71), 18830 (2018)
Nouel KM, Fedkiw PS, Electrochim. Acta, 43(16-17), 2381 (1998)
Yamaguchi T, Miyata F, Nakao S, Adv. Mater., 15(14), 1198 (2003)
Liu FQ, Yi BL, Xing DM, Yu JR, Zhang HM, J. Membr. Sci., 212(1-2), 213 (2003)
Mohammad EZ, Fereidoon M, Ahmad R, Iran. Polym. J., 25(7), 589 (2016)
Dai JC, Teng XG, Song YQ, Ren J, J. Membr. Sci., 522, 56 (2017)
Ma CH, Yu TL, Lin HL, Huang YT, Chen YL, Jeng US, Lai YH, Sun YS, Polymer, 50(7), 1764 (2009)
Yeo RS, Polymer, 21(4), 432 (1980)
Wang Z, Tang HL, Li JR, Zeng Y, Chen LT, Pan M, J. Power Sources, 256, 383 (2014)
Ghahremani H, Moradi A, Abedini-Torghabeh J, Hassani SM, Der Chemica Sinica, 2(6), 212 (2011)
Vazquez G, Alvarez E, Navaza JM, J. Chem. Eng. Data, 40(3), 611 (1995)
Kreuer KD, Rabenau A, Weppner W, Angew. Chem.-Int. Edit., 21(3), 208 (1982)
Ludvigsson M, Lindgren J, Tegenfeldt J, J. Electrochem. Soc., 147(4), 1303 (2000)
Wang Z, Tang HL, Li JR, Zeng Y, Chen LT, Pan M, J. Power Sources, 256, 383 (2014)
Zhang WJ, Kish DL, Pintauro PN, ECS. Trans., 33(1), 635 (2010)
Baik KD, Hong BK, Kim MS, Renew. Energy, 57, 234 (2013)

