ISSN: 0304-128X ISSN: 2233-9558
Copyright © 2025 KICHE. All rights reserved

Articles & Issues

Language
korean
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received March 27, 2013
Accepted April 23, 2013
Available online July 23, 2013
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

볼밀링법으로 제조된 흑연-실리콘 복합체의 리튬전지 음전극 특성

Lithium Battery Anode Properties of Ball-Milled Graphite-Silicon Composites

한국전자통신연구원 부품소재부문 전력제어소자연구실, 305-700 대전광역시 유성구 가정로 218
Research Section of Power Control Devices, Electronics and Telecommunications Research Institute (ETRI), 218 Gajung-ro, Yuseong-gu, Daejeon 305-700, Korea
kwang@etri.re.kr
Korean Chemical Engineering Research, August 2013, 51(4), 411-417(7)
https://doi.org/10.9713/kcer.2013.51.4.411
downloadDownload PDF

Abstract

리튬 2차전지 음전극 활물질로 사용하기 위해, 실리콘(Si) 나노입자(평균입경 100 nm, 0~50 wt%)와 흑연 분말(평균 입경 15 μm)을 사용하여 볼밀링법으로 흑연-실리콘 복합체 분말을 제조하고 그 전기화학적 특성을 조사하였다. 실리콘 함량이 증가할수록 흑연은 볼밀링에 의해 입경이 작아지고 무정형 특성을 보이는 반면, 실리콘 입자는 나노결정성의 변화 없이 무정형 흑연 내에 싸여진 형태로 유지되었다. 저속 사이클릭 볼타메트리 특성상 0.2~0.35 V와 0.55~0.6 V에서 각각 흑연과 실리콘의 전형적 산화피크가 검출되었고 가역성도 우수(첫 사이클 제외)한 반면, 고속 거동에서는 사이클 반복에 따른 비가역성이 현저하게 나타났다. 또한 충방전 초기에는 큰 비가역 용량이 나타나지만 사이클 경과에 따라 감소하였으며, 특히 실리콘을 20 wt% 정도 포함하는 복합체가 50 사이클에서 약 485 mAh g ^(-1)의 포화된 방전용량을 나타내었다. 이것은 실리콘을 싸고 있는 흑연의 무정형 상이 실리콘-리튬의 합금/탈합금에 따른 체적 변화를 안정적으로 완충할 수 있는 모폴로지가 재료의 적정 조성(흑연:실리콘=8:2 w/w)에 의해 형성되었기 때문이다.
To use as an anode material of lithium secondary battery, graphite-silicon composite powders are prepared by ball-milling with silicon nanoparticles (average diameter 100 nm, 0~50 wt%) and graphite powder (average diameter 15 μm) and their electrochemical properties are examined. As the silicon content increases, the graphite becomes smaller by the ball-milling and amorphous phase appears whereas the silicon do not suffer the change of nanocrystalline phases and embeds within the amorphous phase of graphite. Cyclic voltammetry at low scan rate reveals that typical oxidation peaks of graphite and silicon appear at 0.2~0.35 and 0.55~0.6 V, respectively, with higher reversibility for repeated cycles. In contrast, the high-scan-rate redox behavior is very irreversible for repeated cycles. High irreversible capacity is exhibited in the initial charging-discharging cycles, but it diminishes as the cycle number increases. The saturated discharge capacity achieves about 485 mAh g ^(-1) at 50th cycle for the composite of Si 20 wt%. This is due to the formation of amorphous graphite morphology by the adequate composition (C:Si=8:2 w/w), which efficiently buffers the volume change during alloying/dealloying between silicon and lithium.

References

Boukamp BA, Lesh GC, Huggins RA, J. Electrochem. Soc., 128(3), 725 (1981)
Kasavajjula U, Wang CS, Appleby AJ, J. Power Sources, 163(2), 1003 (2007)
Wang CS, Wu GT, Zhang XB, Qi ZF, Li WZ, J. Electrochem. Soc., 145(8), 2751 (1998)
Wang GX, Yao J, Liu HK, Electrochem. Solid State Lett., 7(8), A250 (2004)
Dimov N, Kugino S, Yoshio A, J. Power Sources, 136(1), 108 (2004)
Yoshio M, Kugino S, Dimov N, J. Power Sources, 153(2), 375 (2006)
Yoshio M, Tsumura T, Dimov N, J. Power Sources, 163(1), 215 (2006)
Jo YN, Kim Y, Kim JS, Song JH, Kim KJ, Kwag CY, Lee DJ, Park CW, Kim YJ, J. Power Sources, 195(18), 6031 (2010)
Hwang SS, Cho CG, Kim H, Electrochim. Acta, 55(9), 3236 (2010)
Yoon YS, Jee SH, Lee SH, Nam SC, Surf. Coatings Tech., 206(2-3), 553 (2011)
Ng SH, Wang J, Wexler D, Konstantinov K, Guo ZP, Liu HK, Angew. Chem. Intern. Ed., 45(41), 6896 (2006)
Zhang T, Gao J, Fu LJ, Yang LC, Wu YP, Wu HQ, J. Mater. Chem., 17(13), 1321 (2007)
Wang W, Datta MK, Kumta PN, J. Mater. Chem., 17(30), 3229 (2007)
Lee JH, Kim WJ, Kim JY, Lim SH, Lee SM, J. Power Sources, 176(1), 353 (2008)
Martin C, Alias M, Christien F, Crosnier O, Belanger D, Brousse T, Adv. Mater., 21(46), 4735 (2009)
Fuchsbichler B, Stangl C, Kren H, Uhlig F, Koller S, J. Power Sources, 196(5), 2889 (2011)
Lai J, Guo H, Wang Z, Li X, Zhang X, Wu F, Yue P, J. Alloys Comp., 530, 30 (2012)
Wang XL, Han WQ, ACS Appl. Mater. Interf., 2(12), 3709 (2010)
Lee JK, Smith KB, Hayner CM, Kung HH, Chem. Commun., 46(12), 2025 (2010)
Xiang H, Zhang K, Ji G, Lee JY, Zou C, Chen X, Wu J, Carbon., 49(5), 1787 (2011)
Ren JG, Wu QH, Hong G, Zhang WJ, Wu H, Amine K, Yang J, Lee ST, Energy Tech., 1(1), 77 (2013)
Cui LF, Yang Y, Hsu CM, Cui Y, Nano Lett., 9(9), 3370 (2009)
Wang W, Kumta PN, ACS Nano., 4(4), 2233 (2010)
Cui LF, Hu L, Choi JW, Cui Y, ACS Nano., 4(7), 3671 (2010)
Klankowski SA, Rojeski RA, Cruden BA, Liu J, Wu J, Li J, J. Mater. Chem. A., 1(4), 1055 (2013)
Zhou XY, Tang JJ, Yang J, Xie J, Ma LL, Electrochim. Acta., 87, 663 (2013)
Alias M, Crosnier O, Sandu I, Jestin G, Papadimopoulos A, Le Cras F, Schleich DM, Brousse T, J. Power Sources, 174(2), 900 (2007)
Chou SL, Wang JZ, Choucair M, Liu HK, Stride JA, Dou SX, Electrochem. Commun., 12(2), 303 (2010)
Kim KM, Lee YG, Kim SO, Korean Chem. Eng. Res., 48(3), 292 (2010)
Zhou X, Yin YX, Wan LJ, Guo YG, Chem. Commun., 48(16), 2198 (2012)
Zhang Y, Zhang XG, Zhang HL, Zhao ZG, Li F, Liu C, Cheng HM, Electrochim. Acta, 51(23), 4994 (2006)
Vovk OM, Na BK, Cho BW, Lee JK, Korean J. Chem. Eng., 26(4), 1034 (2009)
Martin C, Crosnier O, Retoux R, Belanger D, Schleich DM, Brousse T, Adv. Funct. Mater., 21(18), 3524 (2011)

The Korean Institute of Chemical Engineers. F5,119, Anam-ro, Seongbuk-gu, Seoul, Republic of Korea
Phone No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Chemical Engineering Research 상단으로