Articles & Issues
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received March 12, 2013
Accepted April 10, 2013
Available online June 3, 2013
-
This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits
unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
순환식 암모니아 반응기(Ammonia Circulation Reactor (ACR))를 이용한 옥수수대의 전처리 및 효소 당화율 향상
Pretreatment of Corn Stover for Improved Enzymatic Saccharification using Ammonia Circulation Reactor (ACR)
국립공주대학교 환경공학과, 331-717 충남 천안시 서북구 부대동 275 1국립농업과학원 농업유전자원센터, 441-707 경기도 수원시 권선구 수인로 126
Department of Environmental Engineering, Kongju National University, 275 Budae-dong, Seobuk-gu, Cheonan, Chungnam 331-717, Korea 1RDA-Genebank Information Center, Rural Development Administration (RDA), 126 Suin-ro, Kweonseon-gu, Suwon-si, Kyonggi 441-853, Korea
thkim@kongju.ac.kr
Korean Chemical Engineering Research, June 2013, 51(3), 335-341(7)
https://doi.org/10.9713/kcer.2013.51.3.335
https://doi.org/10.9713/kcer.2013.51.3.335
Download PDF
Abstract
목질계 바이오매스인 옥수수대 전처리를 위하여 고안된 순환식 암모니아 전처리 반응기(Ammonia Circulation Reactor (ACR))를 이용하여 연구하였다. 이 전처리 방법은 적은 양의 액체를 사용하도록 고안되었으며 이 연구에선 기존의 전처리 공정보다 낮은 전처리 온도(60~80 ℃), 반응시간(4~12 hour) 그리고 고체:액체 비율(1:3~1:8) 등의 공정 조건을 실험 하여 효과를 비교하였다. 즉 여러 공정 조건에서 전처리 후 고형물의 잔류 고체량, 당, Lignin 함량, 그리고 효소당화율 등을 측정하였다. 여러 실험 조건에서 공통적으로 관찰된 것은 전처리 조건이 더 가혹해 지면 Lignin의 제거율이 가장 큰 영향을 받았으며, 47.6~70.6% 범위로 나타났다. 반면 다른 당(Glucan, Xylan)은 손실이 비교적 작게 나타났다. 모_x000D_
든 실험 조건에서, 전처리된 고형물의 Glucan 손실율은 4.7~15.2% 범위로 변화가 크지 않았으며 Xylan 손실율은 여러 조건의 변화에 따라 7.4~25.8% 정도 범위로 나타났다. 암모니아 순환 전처리로 8~12 hour 동안 처리된 옥수수대는 90.1~94.5%의 높은 72-h Glucan 당화율을 (15 FPU-GC220+30 CBU)/g-glucan의 효소 투입으로 나타냈으며 순수 Cellulose인 Avicel의 당화율(92.7%)과 비슷하거나 높았다. 또한 8~12 hour 처리된 옥수수대의 초기 24-h Glucan 당화 속도는 73.0~79.4%로 Avicel의 같은 시간 당화율인 69.5% 보다 높게 나타났다. 반응시간을 증가는 보다 많은 Lignin 을 제거하였으며 따라서 효소 당화율 증가에 기인한 것으로 보인다.
Ammonia circulation reactor (ACR) was devised for the effective pretreatment of corn stover. This method is designed to circulate aqueous ammonia continuously so that it can reduce the chemical and water consumption during pretreatment. In this study, ammonia pretreatment with various reaction conditions such as reaction time (4~12 hour), temperature (60~80 ℃), and solid:liquid ratio (1:3~1:8) was tested. Chemical compositions including solid remaining after reaction, lignin and carbohydrates were analyzed and enzymatic digestibility was also measured. It was observed that as reaction conditions become more severe, lignin removal was significantly affected, which was in the range of 47.6~70.6%. On the other hands, glucan and xylan losses were not substantial as compared to that of lignin. At all tested conditions, the glucan loss was not changed substantially, which was between 4.7% and 15.2%, while the xylan loss varied, which was between 7.4% and 25.8%. With (15 FPU-GC220+30 CBU)/g-glucan of enzyme loading, corn stover treated using ammonia circulation reactor for 8~12 hours resulted in 90.1~94.5% of 72-h glucan digestibility, which was higher than 92.7% of Avicel®-101. In addition, initial hydrolysis rate (at 24 hour) of this treated corn stover was 73.0~79.4%, which was shown to be much faster than 69.5% of Avicel®-101. As reaction time increased, more lignin removal and it was assumed that the enhanced enzymatic digestibility of treated biomass was attributed to the lignin removal.
References
Kamm B, Gruber PR, Kamm M, “Biorefineries - Industrial Processes and Products,” Wiley-VCH Weinheim (2007)
2013 Ethanol Industry Outlook, RFA (Renewable Fuels Association) Washington, DC. USA (2013)
Kim S, Dale BE, Biomass Bioenerg., 26(4), 361 (2004)
Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M, Bioresour. Technol., 96(6), 673 (2005)
Kim TH, Lee YY, Bioresour. Technol., 97(2), 224 (2006)
Kim TH, Kim JS, Sunwoo C, Lee YY, Bioresour. Technol., 90(1), 39 (2003)
Yoo CG, Lee CW, Kim TH, Biomass Bioenerg., 35(12), 4901 (2011)
Zheng Y, Lin HM, Tsao GT, Biotechnol. Prog., 14, 890 (2008)
Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M, Bioresour. Technol., 96(6), 673 (2005)
Li X, Kim TH, Nghiem NP, Bioresour. Technol., 101(15), 5910 (2010)
Kootstra AMJ, Beeftink HH, Scott EL, Sanders JP, Biotechnology for Biofuels., 2, 31 (2009)
Sun Y, Cheng JJ, Bioresour. Technol., 96(14), 1599 (2005)
Park YC, Kim JS, Korean Chem. Eng. Res., 49(4), 470 (2011)
Kim TH, Korean J. Chem. Eng., 28(11), 2156 (2011)
Yoo CG, Nghiem NP, Hicks KB, Kim TH, Bioresour. Technol., 102(21), 10028 (2011)
Berlin A, Balakshin M, Gilkes N, Kadla J, Maximenko V, Kubo S, J. Biotechnol., 125, 198 (2006)
Ghosh TK, Pure Appl.Chem., 59(2), 257 (1987)
National Renewable Energy Laboratory, “Standard Biomass Analytical Procedures,” http://www.nrel.gov/biomass/analytical_procedures.html.
Kim TH, Lee YY, Appl. Biochem.Biotechnol., 136-140, 81 (2007)
Kim TH, Taylor F, Hicks KB, Bioresour. Technol., 99(13), 5694 (2008)
2013 Ethanol Industry Outlook, RFA (Renewable Fuels Association) Washington, DC. USA (2013)
Kim S, Dale BE, Biomass Bioenerg., 26(4), 361 (2004)
Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M, Bioresour. Technol., 96(6), 673 (2005)
Kim TH, Lee YY, Bioresour. Technol., 97(2), 224 (2006)
Kim TH, Kim JS, Sunwoo C, Lee YY, Bioresour. Technol., 90(1), 39 (2003)
Yoo CG, Lee CW, Kim TH, Biomass Bioenerg., 35(12), 4901 (2011)
Zheng Y, Lin HM, Tsao GT, Biotechnol. Prog., 14, 890 (2008)
Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M, Bioresour. Technol., 96(6), 673 (2005)
Li X, Kim TH, Nghiem NP, Bioresour. Technol., 101(15), 5910 (2010)
Kootstra AMJ, Beeftink HH, Scott EL, Sanders JP, Biotechnology for Biofuels., 2, 31 (2009)
Sun Y, Cheng JJ, Bioresour. Technol., 96(14), 1599 (2005)
Park YC, Kim JS, Korean Chem. Eng. Res., 49(4), 470 (2011)
Kim TH, Korean J. Chem. Eng., 28(11), 2156 (2011)
Yoo CG, Nghiem NP, Hicks KB, Kim TH, Bioresour. Technol., 102(21), 10028 (2011)
Berlin A, Balakshin M, Gilkes N, Kadla J, Maximenko V, Kubo S, J. Biotechnol., 125, 198 (2006)
Ghosh TK, Pure Appl.Chem., 59(2), 257 (1987)
National Renewable Energy Laboratory, “Standard Biomass Analytical Procedures,” http://www.nrel.gov/biomass/analytical_procedures.html.
Kim TH, Lee YY, Appl. Biochem.Biotechnol., 136-140, 81 (2007)
Kim TH, Taylor F, Hicks KB, Bioresour. Technol., 99(13), 5694 (2008)

