Articles & Issues
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received February 6, 2013
Accepted March 10, 2013
Available online June 3, 2013
-
This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits
unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
NaOH 화학적 활성화로 제조된 하이브리드 커패시터의 전기화학적 특성
The Electrochemical Characteristics of Hybrid Capacitor Prepared by Chemical Activation of NaOH
충북대학교 화학공학과, 산업과학기술연구소, 361-763 충북 청주시 흥덕구 성봉로 410
Department of Chemical Engineering, Research Institute of Industrial Sci. & Tech., Chungbuk National Univ., 410 Sungbong-ro, Heungduk-gu, Chungju, Chungbuk 361-763, Korea
jdlee@chungbuk.ac.kr
Korean Chemical Engineering Research, June 2013, 51(3), 308-312(5)
https://doi.org/10.9713/kcer.2013.51.3.308
https://doi.org/10.9713/kcer.2013.51.3.308
Download PDF
Abstract
NaOH 화학적 활성화법을 사용하여 야자각 차로부터 고 비표면적과 미세기공이 발달된 활성탄을 제조하였다. 활성탄 제조 공정은 탄화과정에서 활성화 약품과 야자각 차의 비율과 불활성 기체 유량과 같은 실험변수들을 분석함으로서 수행되었다. 이와 같은 NaOH 화학적 활성화에 의한 2,481 m2/g의 고 비표면적과 2.32 nm의 평균 기공크기를 갖는 활성탄이 얻어졌다. 양극으로 LiMn2O4, LiCoO2와 음극으로 제조된 활성탄을 사용하여 하이브리드 커패시터의 전기화학적 성능을 조사하였다. LiPF6, TEABF4의 유기 전해질을 사용한 하이브리드 커패시터의 전기화학적 거동은 정전류 충방전, 순환 전류 전압법, 사이클과 누설전류 테스트에 의해 특성화 되었다. LiMn2O4/AC 전극을 사용한 하이브리드 커패시터가 다른 하이브리드 시스템 보다 더 좋은 충방전 성능을 보였으며, 출력밀도 1,448 W/kg와 131 Wh/kg의 고 에너지 밀도를 전달할 수 있다.
Active carbons with high specific surface area and micro pore structure were prepared from the coconut shell char using the chemical activation method of NaOH. The preparation process has been optimized through the analysis of experimental variables such as activating chemical agents to char ratio and the flow rate of gas during carbonization. The active carbons with the surface area (2,481m2/g) and mean pore size (2.32 nm) were obtained by chemical activation with NaOH. The electrochemical performances of hybrid capacitor were investigated using LiMn2O4, LiCoO2 as the positive electrode and prepared active carbon as the negative electrode. The electrochemical behaviors of hybrid capacitor using organic electrolytes (LiPF6, TEABF4) were characterized by constant current charge/discharge, cyclic voltammetry, cycle and leakage tests. The hybrid capacitor using LiMn2O4/AC electrodes had better capacitance than other hybrid systems and was able to deliver a specific energy as high as 131 Wh/kg at a specific power of 1,448 W/kg.
References
Kandalkar SG, Lee HM, Seo SH, Lee K, Kim CK, Korean J. Chem. Eng., 28(6), 1464 (2011)
Lee SW, Park DK, Lee JK, Ju JB, Sohn TW, Korean J. Chem. Eng., 18(3), 371 (2001)
Tanahashi I, Yoshida A, Nishino A, J. Electrochem.Soc., 137, 3052 (1990)
Tanahashi I, Yoshida A, Nishino A, Carbon., 28, 477 (1990)
Mitani S, Lee SI, Yoon SH, Korai Y, Mochida I, J. Power Sources, 133(2), 298 (2004)
Roh KC, Park JB, Lee CT, Park CW, J. Korean Ind. Eng. Chem., 18(4), 381 (2007)
Ohta T, Kim IT, Egashira M, Yoshimoto N, Morita M, J. Power Sources., 198, 408 (2011)
Liu Z, Ling L, Qiao W, Liu L, Carbon., 37, 2063 (1999)
Ozaki J, Endo N, Ohizumi W, Igarashi K, Nakahara M, Oya A, Carbon., 35, 1031 (1997)
Lillo-Rodenas MA, Lozano-Castello D, Cazorla-Amoros A, Linares-Solano, Carbon., 39, 751 (2001)
Kang CY, Shin YS, Lee JD, Korean Chem. Eng. Res., 49(1), 10 (2011)
Wang YG, Xia YY, Electrochem. Commum., 7, 1138 (2005)
Yoon JH, Bang HJ, Prakash J, Sun YK, Mater. Chem. Phys., 110(2-3), 222 (2008)
Ma SB, Nam KW, Yoon WS, Yang XQ, Ahn KY, Oh KH, Kim KB, Electrochem. Commun., 9, 2807 (2007)
Wang KP, Teng H, Carbon., 44, 3218 (2006)
Lee MS, Sin YS, Lee JD, J. Kor. Oil Chem. Soc., 27, 310 (2011)
Kwon JS, Yoon YI, Ko JM, Theor. Appl. Chem. Eng., 14, 2857 (2008)
Egashira M, Sawada N, Ueda K, Yoshimoto N, Morita M, J. Power Sources, 195(6), 1761 (2010)
Du Pasquier A, Huang CC, Spitler T, J. Power Sources, 186(2), 508 (2009)
Hu XB, Deng ZH, Suo JS, Pan ZL, J. Power Sources, 187(2), 635 (2009)
Lee SW, Park DK, Lee JK, Ju JB, Sohn TW, Korean J. Chem. Eng., 18(3), 371 (2001)
Tanahashi I, Yoshida A, Nishino A, J. Electrochem.Soc., 137, 3052 (1990)
Tanahashi I, Yoshida A, Nishino A, Carbon., 28, 477 (1990)
Mitani S, Lee SI, Yoon SH, Korai Y, Mochida I, J. Power Sources, 133(2), 298 (2004)
Roh KC, Park JB, Lee CT, Park CW, J. Korean Ind. Eng. Chem., 18(4), 381 (2007)
Ohta T, Kim IT, Egashira M, Yoshimoto N, Morita M, J. Power Sources., 198, 408 (2011)
Liu Z, Ling L, Qiao W, Liu L, Carbon., 37, 2063 (1999)
Ozaki J, Endo N, Ohizumi W, Igarashi K, Nakahara M, Oya A, Carbon., 35, 1031 (1997)
Lillo-Rodenas MA, Lozano-Castello D, Cazorla-Amoros A, Linares-Solano, Carbon., 39, 751 (2001)
Kang CY, Shin YS, Lee JD, Korean Chem. Eng. Res., 49(1), 10 (2011)
Wang YG, Xia YY, Electrochem. Commum., 7, 1138 (2005)
Yoon JH, Bang HJ, Prakash J, Sun YK, Mater. Chem. Phys., 110(2-3), 222 (2008)
Ma SB, Nam KW, Yoon WS, Yang XQ, Ahn KY, Oh KH, Kim KB, Electrochem. Commun., 9, 2807 (2007)
Wang KP, Teng H, Carbon., 44, 3218 (2006)
Lee MS, Sin YS, Lee JD, J. Kor. Oil Chem. Soc., 27, 310 (2011)
Kwon JS, Yoon YI, Ko JM, Theor. Appl. Chem. Eng., 14, 2857 (2008)
Egashira M, Sawada N, Ueda K, Yoshimoto N, Morita M, J. Power Sources, 195(6), 1761 (2010)
Du Pasquier A, Huang CC, Spitler T, J. Power Sources, 186(2), 508 (2009)
Hu XB, Deng ZH, Suo JS, Pan ZL, J. Power Sources, 187(2), 635 (2009)

