Articles & Issues
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received September 5, 2012
Accepted October 14, 2012
Available online January 30, 2013
-
This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits
unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
TTA와 TOPO를 이용한 수용액 중의 리튬이온 용매추출
Solvent Extraction of Lithium Ion in Aqueous Solution Using TTA and TOPO
부경대학교 화학공학과, 608-739 부산시 남구 용당동 산 100 1부경대학교 기계시스템공학과, 608-739 부산시 남구 용당동 산 100
Department of Chemical Engineering, Pukyoung National University, San 100 Yongdang-dong, Nam-gu, Busan 608-739, Korea 1Department of Mechanical system Engineering, Pukyoung National University, San 100 Yongdang-dong, Nam-gu, Busan 608-739, Korea
csju@pknu.ac.kr
Korean Chemical Engineering Research, February 2013, 51(1), 53-57(5)
https://doi.org/10.9713/kcer.2013.51.1.53
https://doi.org/10.9713/kcer.2013.51.1.53
Download PDF
Abstract
해수담수화장치에서 배출되는 농축수로부터 희소금속인 리튬을 추출하는 공정을 개발하기 위한 선행 연구로, 용매추출제 TTA와 TOPO를 사용하여 수용액 중의 리튬이온을 추출하는 연구를 수행하였다. 추출제의 농도, 유기용매의 종류, 추출액과 수용액의 비, 수용액의 pH 및 알칼리제 종류 등을 변화시키면서 리튬 이온의 용매추출에 미치는 영향을 조사하였다. 해수의 주요 성분인 염화나트륨의 첨가가 리튬 이온의 용매추출에 미치는 영향도 함께 조사하였다. 리튬 추출의 최적 조건은 추출제 농도는 TTA 0.02 M, TOPO 0.04 M, 유기용매는 케로센, pH는 10.2~10.6 이었으며, 알칼리제로는 암모니아 수용액을 사용한 경우 리튬이온의 추출효율이 가장 높았다. 또한 염화나트륨을 첨가하여 리튬 용매추출을 진행한 결과 염화나트륨은 리튬이온의 추출을 방해하는 것을 알 수 있었다.
For the purpose of development of the extraction process of lithium ion from concentrated water eliminated from desalination process, an experimental research on the solvent extraction of lithium ion from aqueous solutions was performed. The effects of operating parameters, such as concentration of extractant, ratio of extracting solution/aqueous solution, pH of aqueous solution, were examined. The effect of sodium chloride, the major component of sea water, was also examined. Lithium ion in aqueous solutions of pH=10.2~10.6 adjusted by ammonia solution was_x000D_
most effectively extracted by extracting solution composed of 0.02 M TTA and 0.04 M TOPO in kerosine. The addition of sodium chloride in lithium aqueous solution significantly interfered the extraction of lithium ion.
Keywords
References
Kim YI, Sim GJ, Yu HS, Korea Institute of Science and Technology Information., 1 (2011)
Brian WJ, “2007 Minerals Yearbook,” U.S. Geological Survey Minerals Yearbook, Lithium (advance release), 44.1-44.8 (2007)
Brin A, Annales des Mines., 11-12, 83 (1982)
Lee JC, The Korean Society for Geosystem Engineering., 42(5), 513 (2005)
Driscoll MJ, Best FR, “Progress Toward the Recovery of Uranium from Seawater,” MIT Department of Nuclear Engineering USA, Report No. MIT NE-256 (1982)
Yangase K, Yoshinage T, Kawano K, Matsuoka T, Bull. Chem. Soc. Jpn., 56, 2490 (1983)
Ooi K, Miyai Y, Katoh S, Abe M, Bull. Soc. Sea Water Sci. Jpn., 42(5), 219 (1989)
Lee JC, Choi S, Korean Chem. Eng. Res., 44(2), 227 (2006)
Ishimori K, Imura H, Ohashi K, Anal. Chim.Acta., 454, 241 (2002)
Kim YS, Choi IG, Choi JM, Lee CW, Bull. Korean Chem. Soc., 21(9), 855 (2000)
Saeed MM, Ahmed M, Ali A, J. Radioanal. Nucl. Chem., 164(1), 1 (1992)
Kim YS, Choi GI, Choi JM, Bull. Korean Chem. Soc., 24(10), 1495 (2003)
Lee HS, Yoo JW, Korean J. Chem. Eng., 28(4), 1065 (2011)
Dep. of Env. Korea., 9 (2001)
Brian WJ, “2007 Minerals Yearbook,” U.S. Geological Survey Minerals Yearbook, Lithium (advance release), 44.1-44.8 (2007)
Brin A, Annales des Mines., 11-12, 83 (1982)
Lee JC, The Korean Society for Geosystem Engineering., 42(5), 513 (2005)
Driscoll MJ, Best FR, “Progress Toward the Recovery of Uranium from Seawater,” MIT Department of Nuclear Engineering USA, Report No. MIT NE-256 (1982)
Yangase K, Yoshinage T, Kawano K, Matsuoka T, Bull. Chem. Soc. Jpn., 56, 2490 (1983)
Ooi K, Miyai Y, Katoh S, Abe M, Bull. Soc. Sea Water Sci. Jpn., 42(5), 219 (1989)
Lee JC, Choi S, Korean Chem. Eng. Res., 44(2), 227 (2006)
Ishimori K, Imura H, Ohashi K, Anal. Chim.Acta., 454, 241 (2002)
Kim YS, Choi IG, Choi JM, Lee CW, Bull. Korean Chem. Soc., 21(9), 855 (2000)
Saeed MM, Ahmed M, Ali A, J. Radioanal. Nucl. Chem., 164(1), 1 (1992)
Kim YS, Choi GI, Choi JM, Bull. Korean Chem. Soc., 24(10), 1495 (2003)
Lee HS, Yoo JW, Korean J. Chem. Eng., 28(4), 1065 (2011)
Dep. of Env. Korea., 9 (2001)

