ISSN: 0304-128X ISSN: 2233-9558
Copyright © 2025 KICHE. All rights reserved

Articles & Issues

Language
korean
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received August 14, 2012
Accepted September 21, 2012
Available online January 30, 2013
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Ni 담지 CexZr1-xO2 촉매상에서 프로판의 자열개질반응

Autothermal Reforming of Propane over Ni/CexZr1-xO2 Catalysts

전남대학교 대학원 신화학소재공학과, 500-757 광주광역시 북구 용봉로 77 1전남대학교 응용화학공학부 및 촉매연구소, 500-757 광주광역시 북구 용봉로 77
Department of advanced chemical engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 500-757, Korea 1Faculty of Applied Chemical Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 500-757, Korea
Korean Chemical Engineering Research, February 2013, 51(1), 47-52(6)
https://doi.org/10.9713/kcer.2013.51.1.47
downloadDownload PDF

Abstract

본 연구는 Ni/CexZr1-xO2 촉매를 이용하여 프로판의 자열개질반응을 통한 수소제조에 관한 것이다. Ni/CexZr1-xO2 촉매는 용매로서 물을 사용한 방법(CZ-W), 우레아와 물을 사용한 방법(CZ-UW), 우레아, 에탄올 및 물을 사용한 방법 (CZ-UWA)으로 각각 제조하였다. 반응물질의 조성은 Steam/C3H8=3, C3H8/O2=2.70 이었고, 반응은 상압 고정층 유통식 반응기에서 300~700 ℃ 온도범위에서 진행하였다. 촉매제조시 용매에 우레아 및 에탄올을 첨가할 경우 촉매의 활성이 증가하였다. CZ-UW 촉매의 경우 클러스터형태의 탄소생성에 기인한 활성점 피막으로 인해 쉽게 비활성화가 초래됐다. 하지만 CZ-UWA 촉매의 경우 반응 후 탄소가 활성에 영향을 미치지 않는 나노파이버형태로 존재하여 활성저하가 발생되지 않음을 SEM을 통해 확인했다. 또한 Ni/Ce0.75Zr0.25O2 촉매의 전환율 및 수율이 더 좋게 나타났으며 또한 소량의 Cobalt를 첨가했을 때 탄소에 대한 저항성이 크게 향상됨을 TGA로 확인하였다.
In this study, the catalytic performance and characterization of Ni/CexZr1-xO2 were investigated using an autothermal reforming (ATR) process for hydrogen production. The Ni/CexZr1-xO2 catalysts were prepared using the following methods: the water method (CZ-W), urea water method (CZ-UW) and urea, water and ethanol method (CZUWA). The performance of Ni/CexZr1-xO2 catalysts in autothermal reforming of propane for hydrogen production was studied in a fixed-bed flow reactor. Reaction tests were conducted by using a feed of H2O/C3H8/O2=3/1/0.37 and 300~700 ℃. The CZ-UW and CZ-UWA catalysts showed higher propane conversion and hydrogen yield than the CZ-W catalyst. The activity test confirmed that the improvement in the water.ethanol catalyst was due to the low level of carbon deposition. SEM showed that the surface carbon consisted of clusters on the used CZ-UW catalyst, which is incontrast to the nano-fiber morphology observed on the used CZ-UWA catalyst. It was found that the amount of carbon deposition depends on the preparation method. Especially the Ni/Ce0.75Zr0.25O2 was showed higher propane conversion and hydrogen yield than the other catalysts. Also TGA showed that the resistance of carbon deposition increase to Co addition.

References

Cherry RS, Int. J. Hydrogen Eng., 29, 125 (2004)
Shinnar R, Technol. Soc., 25, 455 (2003)
Ahmed S,Krumpelt M, Int. J. Hydrogen Eng., 26, 291 (2001)
Acres GJK, J. Power Sources., 100, 1 (2001)
Heinzel A, Vogel B, Hubner P, J. Power Sources., 105, 4 (2002)
Park JH, Lee D, Lee HC, Park ED, Korean J. Chem. Eng., 27(4), 1132 (2010)
Hori CE, Permana H, Ng KYS, Brenner A, More K, Rahmoeller KM, Belton D, Appl. Catal. B: Environ., 16(2), 105 (1998)
Fornasiero P, Dimonte R, Rao GR, Kaspar J, Meriani S, Trovarelli A, Graziani M, J. Catal., 151(1), 168 (1995)
Ming QM, Healey T, Allen L, Irving P, Catal. Today, 77(1-2), 51 (2002)
Bhattacharyya A, Chang VW, Schumacher DJ, Appl.Clay Sci., 13, 317 (1998)
Johnston B, Mayo MC, Anshuman K, Technovation., 25, 569 (2005)
Slagtern A, Olsbye U, Appl. Catal. A: Gen., 110(1), 99 (1994)
Kikuchi R, Iwasa Y, Takeguchi T, Eguchi K, Appl. Catal. A: Gen., 281(1-2), 61 (2005)
Avci AK, Trimm DL, Onsan ZI, Chem. Eng. J., 90(1-2), 77 (2002)
Kolios G, Frauhammer J, Eigenberger G, Chem. Eng. Sci., 55(24), 5945 (2000)
Cavani F, Trifiro F, Vaccari A, Catal. Today., 11, 173 (1991)
Chen YG, Tomishige K, Yokoyama K, Fujimoto K, Appl. Catal. A: Gen., 165(1-2), 335 (1997)
Ohi T, Miyata T, Li DL, Shishido T, Kawabata T, Sano T, Takehira K, Appl. Catal. A: Gen., 308, 194 (2006)
Rostrup-Nielsen JR, Catal. Today., 18(4), 305 (1993)
Recupero V, Pino L, Vita A, Cipit F, Cordaro M, Lagana M, Int. J. Hydrogen Energy., 30, 963 (2005)
Ayabe S, Omoto H, Utaka T, Kikuchi R, Sasaki K, Teraoka Y, Eguchi K, Appl. Catal. A: Gen., 241(1-2), 261 (2003)
Basile F, Basini L, D'Amore M, Fornasari G, Guarinoni A, Matteuzzi D, Del Piero G, Trifiro F, Vaccari A, J. Catal., 173(2), 247 (1998)
Bhattacharyya A, Chang VW, Schumacher DJ, Appl.Clay Sci., 13, 317 (1998)
Chen YG, Tomishige K, Yokoyama K, Fujimoto K, Appl. Catal. A: Gen., 165(1-2), 335 (1997)
Cho DH, Kim WS, Shin JH, Lim SK, J. Korean Ind. Eng. Chem., 16(1), 45 (2005)
Park JH, Lee D, Lee HC, Park ED, Korean J. Chem. Eng., 27(4), 1132 (2010)
Huang T, Huang W, Huang J, Ji P, Fuel Process. Technol., 92(10), 1868 (2011)
Park SH, Chun BH, Kim SH, Korean J. Chem. Eng., 28(2), 402 (2011)

The Korean Institute of Chemical Engineers. F5,119, Anam-ro, Seongbuk-gu, Seoul, Republic of Korea
Phone No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Chemical Engineering Research 상단으로