ISSN: 0304-128X ISSN: 2233-9558
Copyright © 2025 KICHE. All rights reserved

Articles & Issues

Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

Articles in press

폐망간전지에서 재활용된 Mn₃O₄의 수분 방출 방지 특성을 활용한 리튬-공기 전지 촉매 응용

Recycled Mn₃O₄ from Spent Manganese Batteries as Electrocatalysts for Lithium-Air Batteries with Water Release Prevention

Da Eun Han1 Hyunwoo Koo1 Gun Woo Jang1 Ye Rim Oh1 Yoon Seung Kwak1 Hee Soo Kim2† Choi, Won Ho1†
1Chonnam National University Petrochemical Materials, 2Korea Institute of Industrial Technology (KITECH) Low-Carbon Energy Group
In Press, Journal Pre-proof, Available online 1 May 2025

Abstract

폐망간 전지에서 추출한 Mn₃O₄는 리튬-공기 전지의 전기화학 촉매로 활용되어 안정적인 성능을 보였다. Mn₃O₄는 안정적인 스피넬 구조를 형성하여 방전 과정에서 추가적인 수분 방출이 없으며, 이는 전극 부식 및 전해질 부반응을 방지하고 안정적인 사이클 성능을 제공한다. Mn₃O₄는 γ-MnO₂ 에 비해 완만한 초기 충전 곡선을 보여주며, 이는 Mn₃O₄가 Li₂O₂를 분해하기 위한 전기 촉매 활성이 있음을 나타낸다. 또한, Mn₃O₄는 30사이클까지 안정적인 성능을 유지한 반면, γ-MnO₂는 18사이클 이후부터 불안정한 방전 용량을 보여준다. 이러한 결과는 Mn₃O₄가 수분 방출을 소재 구조적으로 방지함으로써 전지의 불안정성을 최소화하고 경제성과 내구성을 겸비한 촉매로써 활용가능함을 보여준다. 더나아가, 폐망간 전지의 효율적 재활용 및 리튬-공기 전지 실용화를 위한 새로운 기술적 가능성을 제시한다.
Mn₃O₄ extracted from spent manganese batteries demonstrated stable performance as an electrocatalyst for lithium-air batteries. Mn₃O₄ forms a stable spinel structure that prevents additional water release during the discharge process, effectively mitigating electrode corrosion and electrolyte side reactions while ensuring reliable cycling performance. Compared to γ-MnO₂, Mn₃O₄ exhibits a gentler initial charging curve, suggesting superior electrocatalytic activity for Li₂O₂ decomposition. Furthermore, Mn₃O₄ maintained consistent performance for 30 cycles, whereas γ-MnO₂ showed significant discharge instability after 18 cycles. These findings underscore that Mn₃O₄ prevents water release through its intrinsic structural stability, reducing operational instability while providing both cost-effective and durable catalytic performance. Moreover, this study highlights the feasibility of Mn₃O₄ as an electrocatalyst for the efficient recycling of spent manganese batteries and its real-world application in lithium-air batteries.

The Korean Institute of Chemical Engineers. F5,119, Anam-ro, Seongbuk-gu, Seoul, Republic of Korea
Phone No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Chemical Engineering Research 상단으로