Articles & Issues
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
-
This is an Open-Access article distributed under the terms of the Creative Commons Attribution
Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium,
provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
Articles in press
저전력 Ar 플라즈마를 이용한 MoS₂ 표면 황 공극 우선 생성 공정 및 다중분석 기반 공정 윈도우 규명
Low-Power Ar Plasma Engineering of Sulfur Vacancies on MoS₂: Defect-Selective Process Window Verified by Multi-Modal Analysis
Jinkyeong Kim1
Joonhyub Kim1†
1pusan.univ nanomechatronics engineering
In Press, Journal Pre-proof, Available online 1 May 2026
Abstract
본 연구는 CVD 기반 3-layer MoS₂ 박막을 대상으로, 10 W 저전력 Ar 플라즈마를 이용해 표면 황 공극(S-vacancy)을 선택적으로 도입할 수 있는 공정 윈도우를 규명하였다. 플라즈마 노출 시간을 2–16 s로 조절하며 Raman, AFM, XPS, AES를 적용한 결과, 2–8 s 구간에서 구조 손상 없이 S 원자가 우선적으로 제거되는 결함-우선 영역(defect-first window)이 도출되었다. Raman 기반 Δω 감소는 결함 축적을 시사했고, AFM은 2 s까지 두께 변화가 없음을 보여 저손상 조건을 확인했다. XPS에서 S/Mo 원자비는 1.91에서 1.51로 감소하며 선택적 S 제거가 정량적으로 입증되었고, AES는 초표면에서 동일 경향을 더 명확히 나타냈다. 이러한 공정 조건은 문헌에서 보고된 S-vacancy 기반 전기화학 활성도(전하 전달 저항 감소, Cdl증가, ECSA 증가)와 부합하며, MoS₂ 표면 기능화 및 촉매 반응성 향상을 위한 전처리 전략으로 활용 가능함을 제시한다.
In this study, we established a process window for the selective introduction of surface sulfur vacancies (S-vacancies) on CVD-based 3-layer MoS2 thin films utilizing 10 W low-power Ar plasma. Comprehensive characterization using Raman spectroscopy, AFM, XPS, and AES revealed a "defect-first window" within the 2–8 s exposure range, where S atoms were preferentially removed while preserving the structural integrity of the film. The accumulation of defects was suggested by a decrease in the Raman wavenumber difference whereas AFM confirmed the low-damage nature of the treatment, showing negligible thickness variation up to 2 s. Quantitative analysis via XPS demonstrated a reduction in the S/Mo atomic ratio from 1.91 to 1.51, a trend that was further substantiated by AES analysis of the topmost surface. These findings are consistent with literature regarding S-vacancy-induced electrochemical activation, including reduced charge transfer resistance, increased double-layer capacitance (Cdl), and enhanced electrochemically active surface area (ECSA). This study suggests that controlled Ar plasma treatment serves as an effective pretreatment strategy for functionalizing MoS₂ surfaces and improving catalytic reactivity.
Keywords

