Issue
Korean Journal of Chemical Engineering,
Vol.30, No.1, 213-220, 2013
Correlation of density for binary mixtures of methanol+ionic liquids using back propagation artificial neural network
Ionic liquids (ILs) are amazing fluids introduced as a replacement for conventional solvents due to their unique properties. Unfortunately, they have several unfavorable features such as high viscosity, which makes pumping them difficult on industrial scale. In this regard, several researchers mix the ionic liquids with each other or some conventional solvents, organic and inorganic compounds, to eliminate those unfavorable features. So the binary properties of the ILs mixtures have been increasingly measured and correlated through the past years. One of the most widely used solvents and additives in the different chemical industries is methanol. In the present investigation, the capability of artificial neural networks for correlating the binary density of the ILs systems containing methanol as a common part (total of 426 experimental data points) has been examined. The results revealed that the best network architecture obtained in this study was feasible to correlate the binary densities of the ILs mixtures with average absolute relative deviation percent (AARD%), average relative deviation percent (ARD%) and correlation coefficient (R2) values of 0.85%, -0.05 and 0.9948, respectively.
[References]
  1. Balducci A, Soavi F, Mastragostino M, Appl. Phys. A: Mater.Sci. Process., 82, 627, 2006
  2. Van Valkenburg ME, Vaughn RL, Williams M, Wilkes JS, Thermochim. Acta, 425(1-2), 181, 2005
  3. Welton T, Chem. Rev., 99(8), 2071, 1999
  4. Dupont J, de Souza RF, Suarez PAZ, Chem. Rev., 102(10), 3667, 2002
  5. Wilkes JS, Ionic Liquids in Perspective: The Past with an Eye toward the Industrial Future. In Ionic Liquids: Industrial Applications for Green Chemistry; Rogers D, Seddon KR, Eds.; ACS Symposium Series 818; American Chemical Society: Washington, DC, 214, 2002
  6. Schroer K, Tacha E, Lutz S, Org. Process Res. Dev., 11, 836, 2007
  7. Farag HK, Endres F, J. Mater. Chem., 18, 442, 2008
  8. Birbilis N, Howlett PC, MacFarlane DR, Forsyth M, Surf.Coat. Technol., 201, 4496, 2007
  9. Fukushima T, Aida T, Chem. Eur. J., 13, 5048, 2007
  10. Docherty KM, Kulpa CF, Green Chem., 7, 185, 2005
  11. Bernot RJ, Brueseke MA, Evans-White MA, Lamberti GA, Environ. Toxicol. Chem., 24, 87, 2005
  12. Swatloski RP, Holbrey JD, Memon SB, Caldwell GA, Caldwell KA, Rogers RD, Chem. Commun., 668, 2004
  13. Swatloski RP, Holbrey JD, Rogers RD, Green Chem., 5, 361, 2003
  14. Qian W, Xu Y, Zh H, Yu C, J. Chem. Thermodyn., 49, 87, 2012
  15. Mokhtarani B, Sharifi A, Mortaheb HR, Mirzaei M, Mafi M, Sadeghian F, J. Chem. Thermodyn., 41(3), 323, 2009
  16. Gomez E, Gonzalez B, Calvar N, Tojo E, Dominguez A, J. Chem. Eng. Data, 51(6), 2096, 2006
  17. Lehmann J, Rausch MH, Leipertz A, Froba AP, J. Chem. Eng. Data, 55(9), 4068, 2010
  18. Wang ZX, Fu L, Xu H, Shang Y, Zhang L, Zhang JM, J. Chem. Eng. Data, 57(4), 1057, 2012
  19. Yu Z, Gao H, Wang H, Chen L, J. Sol. Chem., 41(1), 173, 2012
  20. Davis E, Ierapetritou M, AIChE J., 53(8), 2001, 2007
  21. Oliver MA, Webster R, INT. J. Geographical Information Systems., 4(3), 313, 1990
  22. Moody J, Darken CJ, Neural Compu., 1, 281, 1989
  23. http://www.learnartificialneuralnetworks.com/.
  24. Lazzus JA, J. Taiwan Inst. Chem. Eng., 40, 213, 2009
  25. Torrecilla JS, Rodriguez F, Bravo JL, Rothenberg G, Seddon KR, Lopez-Martin I, Phys. Chem. Chem. Phys., 14, 5826, 2008
  26. Bini R, Chiappe C, Duce C, Micheli A, Solaro R, Starita A, Tine MR, Green Chem., 10, 306, 2008
  27. Lashkarbolooki M, Hezave AZ, Ayatollahi S, Fluid Phase Equilib., 324(25), 128, 2012
  28. Hezave AZ, Lashkarbolooki M, Raeissi S, Fluid Phase Equilib., 314, 128, 2012
  29. Lashkarbolooki M, Hezave AZ, Al-Ajmi AM, Ayatollahi S, Fluid Phase Equilib., 326(25), 15, 2012
  30. Hezave AZ, Lashkarbolooki M, Raeissi S, Ind. Eng. Chem.Res., In Press, 2012
  31. Miao Y, Gan Q, Rooney D, IEEE., 668, 2010
  32. IUPAC Ionic Liquids Database-(ILThermo), NIST Standard Reference Database.
  33. Watanabe K, Matsuura L, Abe M, Kubota M, AIChE J., 35, 1803, 1989
  34. http://www.emilstefanov.net/Projects/NeuralNetworks.aspx.
  35. Sozen A, Arcaklioglu E, Menlik T, Ozalp M, Expert Syst.Appl., 36, 4346, 2009
  36. Sozen A, Ozalp M, Arcaklioglu E, Chem. Eng. Process., 43(10), 1253, 2004
  37. Eslamloueyan R, Khademi MH, Chemometr. Intell. Lab., 104, 195, 2010
  38. Eslamloueyan R, Khademi MH, Int. J. Therm. Sci., 48, 1094, 2009
  39. Lashkarbolooki M, Hezave AZ, Ayatollahi S, Fluid Phase Equilib., In Press
  40. Laugier S, Richon D, Fluid Phase Equilib., 210(2), 247, 2003
  41. Eslamloueyan R, Khademi MH, J. Chem. Eng. Data, 54(3), 922, 2009
  42. Boozarjomehry RB, Abdolahi F, Moosavian MA, Fluid Phase Equilib., 231(2), 188, 2005
  43. Werbos PJ, Back-propagation: Past and Future, Proc. 1988 IEEE International Conference on Neural Neiworks, IEEE Press, New York, 1988
  44. Werbos PJ, Building and Understanding Adaptive Systems: A Statistical/Numerical Approach to Factory Automation and brain Research, IEEE Trans. On Systems, Man and Cyber. SMC-17, No. 1, 7-20, January/February, 1987
  45. Bryson AE, Ho YC, Applied optimal control, Blaisdell, New York, 1969
  46. Werbos PJ, Beyond Regression: New Tools for Prediction and Analysis in the Behavioral Sciences, Ph. D Thesis, Applied Mathematics, Harvard University, November, 1974
  47. Parker DB, Learning-Logic, Technical Report TR-47, Center for Computational Research in Economics and Managernent Science, MIT, April, 1985
  48. Parker DB, Optimal algorithms for adaptive networks: Second order back propagation, Second order direct propagation, and second order hebbian learning, Proc. 1987 IEEE International Conference on Neural Networks, II (593-600), IEEE Press, New York, 1987
  49. Anderson JA, Ftosenfeld E, [Eds.], Neurocomputing: Foundations of Research, MIT Press, Cambridge, Massachusetts, 1988
  50. Rumelhart DE, Hinton GE, William RJ, Nature., 323, 533, 1986
  51. Gallant SI, Neural Network Learning and Expert Systems, MIT Press, Cambridge, 1993
  52. Cybenko GV, Math. Contr. Signals Syst., 2, 303, 1989
  53. Zafarani-Moattar MT, Shekaari H, J. Chem. Eng. Data, 50(5), 1694, 2005
  54. Zafarani-Moattar MT, Shekaari H, J. Chem. Thermodyn., 38(11), 1377, 2006
  55. Iglesias-Otero MA, Troncoso J, Carballo E, J. Solution Chem., 36, 1219, 2007
  56. Stoppa A, Hunger J, Buchner R, J. Chem. Eng. Data, 54(2), 472, 2009
  57. Arce A, Rodriguez W, Soto A, Fluid Phase Equilib., 242(2), 164, 2006
  58. Guo XZ, Wang LS, Tian NN, J. Chem. Eng. Data, 55(4), 1745, 2010
  59. Gonzalez EJ, Alonso L, Dominguez A, J. Chem. Eng. Data, 51(4), 1446, 2006
  60. Vercher E, Orchilles AV, Miguel PJ, Martinez-Andreu A, J. Chem. Eng. Data, 52(4), 1468, 2007
  61. Domanska U, Pobudkowska A, Wisniewska A, J. Solution Chem., 35(3), 311, 2006
  62. Hagan MT, Demuth HB, Beale MH, Neural Network Design, International Thomson Publishing: Boston, 2002
  63. Cooper EI, O’Sullivan EJM, New, Stable, Ambient-Temperature Molten Salts, in Gale RJ, Blomgren G & Kojima H, Proceedings of the Eighth International Symposium on Molten Salts, The Electrochemical Society, Inc., Pennington, NJ, PV, 92-16, 1992
  64. Bonhote P, Dias AP, Papageorgiou N, Kalyanasundaram K, Gratzel M, Inorg. Chem., 35(5), 1168, 1996
  65. Berthod A, Ruiz-Angel MJ, Carda-Broch S, J. Chromatogr.A., 1184, 6, 2008
  66. Sheldon R, Catalytic reactions in ionic liquids, Chem. Commun., 2399, 2011
  67. Lee SH, Lee SB, Chem. Commun., 3469, 2005