Issue
Korean Journal of Chemical Engineering,
Vol.29, No.12, 1802-1805, 2012
Formation of nanoporous nickel oxides for supercapacitors prepared by electrodeposition with hydrogen evolution reaction and electrochemical dealloying
Highly nanoporous nickel oxide electrodes were obtained by electrodeposition accompanied by hydrogen evolution reaction and the selective electrochemical dealloying of copper from Ni-(Cu) porous foam. The nanoporous nickel oxide electrodes consequently have numerous dendritic morphologies composed of nanopores with 20-30 nm diameters. The specific capacitances were 428 F g^(-1) for as-deposited Ni-(Cu) foam electrode and 1,305 F g^(-1) for nanoporous nickel-oxide electrode after dealloying process, respectively. This indicates increased surface area by dealloying process leads to innovative increase of specific capacitance.
[References]
  1. Zhao X, Sanchez BM, Dobson PJ, Grant PS, Nanoscale., 3, 839, 2011
  2. Zhang Y, Feng H, Wu X, Wang L, Zhang A, Xia T, Dong H, Li X, Zhang L, Int. J. Hydrog. Energy., 34, 4889, 2009
  3. Hyun TS, Tuller HL, Youn DY, Kim HG, Kim ID, J.Mater. Chem., 20, 8971, 2010
  4. Zhang Y, Wang L, Zhang A, Song Y, Li X, Wu X, Du P, Yan L, Korean J. Chem. Eng., 28(2), 608, 2011
  5. Yuan C, Hou L, Yang L, Li D, Shen L, Zhang F, Zhang X, J. Mater. Chem., 21, 16035, 2011
  6. Xia XH, Tu JP, Wang XL, Gu CD, Zhao XB, Chem.Comm., 47, 5786, 2011
  7. Augustyn V, Dunn B, C. R. Chim., 13, 130, 2010
  8. Chi B, Li J, Yang X, Gong Y, Wang N, Int. J. Hydrog. Energy., 30, 29, 2005
  9. Guan C, Liu J, Cheng C, Li H, Li X, Zhou W, Zhang H, Fan HJ, Energy Environ. Sci., 4, 4496, 2011
  10. Kim YI, Yoon JK, Kown JS, Ko JM, Korean Chem. Eng. Res., 48(4), 440, 2010
  11. Ko JM, Kim KM, Korean Chem. Eng. Res., 47(1), 11, 2009
  12. Justin P, Kumar Meher S, Ranga Rao G, J. Phys. Chem. C., 114, 5203, 2010
  13. Chang KH, Hu CC, Appl. Phys. Lett., 88, 193102, 2006
  14. Nikolic ND, Popov KI, Pavlovic LJ, Pavlovic MG, J. Electroanal. Chem., 588(1), 88, 2006
  15. Nikolic ND, Brankovic G, Pavlovic MG, Popov KI, J.Eletroanal. Chem., 621, 13, 2008
  16. Cherevko S, Chung CH, Talanta., 80, 1371, 2010
  17. Cherevko S,, Xing X, Chung CH, Electrochem. Commun., 12, 467, 2010
  18. Cherevko S, Chung CH, Electrochim. Acta, 55(22), 6383, 2010
  19. Xing X, Cherevko S, Chung CH, Mater. Chem. Phys., 126(1-2), 36, 2011
  20. Cherevko S, Kulyk N, Chung CH, Nanoscale., 4(1), 103, 2012
  21. Cherevko S, Kulyk N, Chung CH, Nanoscale., 4(2), 568, 2012
  22. Cherevko S, Xing XL, Chung CH, Appl. Surf. Sci., 257(18), 8054, 2011
  23. Cherevko S, Chung CH, Electrochem. Commun., 13, 16, 2011
  24. Chereyko S, Kulyk N, Chung CH, Langmuir, 28(6), 3306, 2012
  25. Xia XH, Tu JP, Zhang YQ, Mai YJ, Wang XL, Gu CD, Zhao XB, J. Phys. Chem. C., 115(45), 22662, 2011
  26. Fukami K, Nakanishi S, Yamasaki H, Tada T, Sonoda K, J.Phys. Chem. C., 111, 1150, 2007