Issue
Korean Journal of Chemical Engineering,
Vol.30, No.1, 55-61, 2013
Modeling of Pt-Sn/γ-Al2O3 deactivation in propane dehydrogenation with oxygenated additives
A reduction in catalyst activity with time-on-stream and formation of side products are the major problems associated with catalytic propane dehydrogenation. Coke formation on the catalyst surface is the most important cause for catalyst deactivation. Experiments have indicated that the presence of very small amounts of oxygenated additives such as water can reduce the amount of coke accumulated on the catalyst surface and enhance catalyst activity. Addition of water beyond an optimum level, however, would result in a loss of activity due to sintering of catalyst. Propane dehydrogenation over a Pt-Sn/γ-Al2O3 catalyst in the temperature range of 575 to 620 ℃ was investigated in the presence of small amounts of water added to the feed. A monolayer-multilayer mechanism was used to model the coke growth kinetics. Coke deposition and catalyst sintering were considered in a catalyst deactivation model to explain the observed optimum level in the amounts of water added to the feed. The model predictions for both propane conversion and coke formation with time-on-stream were in good agreement with experimental data.
[References]
  1. Liu H, Zhang S, Zhou Y, Zhang Y, Bai L, Huang L, Ultrason.Sonochem., 18, 19, 2011
  2. Shee D, Sayari A, Appl. Catal. A: Gen., 389(1-2), 155, 2010
  3. Gascon J, Tellez C, Herguido J, Menendez M, Appl. Catal. A: Gen., 248(1-2), 105, 2003
  4. Kung HH, Adv. Catal., 40, 1, 1994
  5. Mamedov EA, Corberan VC, Appl. Catal. A: Gen., 127(1-2), 1, 1995
  6. Bruning R, Scholz P, Morgenthal L, Andersen O, Scholz J, Nocke G, Ondruschka B, Chem. Eng. Technol., 28(9), 1056, 2005
  7. Blasco T, Nieto JM, Appl. Catal. A: Gen., 157(1-2), 117, 1997
  8. Zhang YW, Zhou YM, Qiu AD, Wang Y, Xu Y, Wu PC, Ind. Eng. Chem. Res., 45(7), 2213, 2006
  9. Ullmann’s Encyclopedia of Industrial Chemistry, Fifth Ed., New York: Wiley-VCH, A.22, 1993
  10. Michorczyk P, Ogonowski J, Appl. Catal. A: Gen., 251(2), 425, 2003
  11. Bhasin MM, McCain JH, Vora BV, Imai T, Pujado PR, Appl. Catal. A: Gen., 221(1-2), 397, 2001
  12. Stagg SM, Querini CA, Alvarez WE, Resasco DE, J. Catal., 168(1), 75, 1997
  13. Llorca J, Homs N, Leon J, Sales J, Fierro JLG, de la Piscina PR, Appl. Catal. A: Gen., 189(1), 77, 1999
  14. Mohagheghi M, Bakeri G, Saeedizad M, Chem. Eng. Technol., 30(12), 1721, 2007
  15. Lobera MP, Tellez C, Herguido J, Menendez M, Appl. Catal. A: Gen., 349(1-2), 156, 2008
  16. Gascon J, Tellez C, Herguido J, Menendez A, Chem. Eng. J., 106(2), 91, 2005
  17. Sahoo SK, Rao PVC, Rajeshwer D, Krishnamurthy KR, Singh ID, Appl. Catal. A: Gen., 244(2), 311, 2003
  18. Cottrell PR, Smith LF, Gohres SW, US Patent, 5,321,192, 1994
  19. Inui T, Miyake T, J. Catal., 86, 446, 1984
  20. Fattahi M, Khorasheh F, Sahebdelfar S, Tahriri Zangeneh F, Ganji K, Saeedizad M, Sci. Iran., 18, 1377, 2011
  21. Farjoo A, Khorasheh F, Niknaddaf S, Soltani M, Sci. Iran., 18, 458, 2011
  22. Biloen P, Dautzenberg FM, Sachtler WMH, J. Catal., 50, 77, 1977
  23. Yu CL, Ge QJ, Xu HY, Li WZ, Ind. Eng. Chem. Res., 46(25), 8722, 2007
  24. Perry RH, Green DW, Perry’s Chemical Engineers’ Handbook, 6th Ed., McGraw-Hill, New York, 1984
  25. Annaland TV, Kuipers JAM, van Swaaij WPM, Catal. Today, 66(2-4), 427, 2001
  26. Nam IS, Kittrell JR, Ind. Eng. Chem. Process Des. Dev., 23, 237, 1984
  27. Romero E, Rodriguez JC, Pena JA, Monzon A, Can. J. Chem. Eng., 74(6), 1034, 1996
  28. Kogan SB, Herskowitz M, Catal. Commun., 2, 179, 2001
  29. Devoldere KR, Froment GF, Ind. Eng. Chem. Res., 38(7), 2626, 1999