Issue
Korean Journal of Chemical Engineering,
Vol.29, No.12, 1761-1765, 2012
Biological synthesis of gold nanoparticles by Bacillus subtilis and evaluation of increased antimicrobial activity against clinical isolates
Biological sources of microorganisms and plants are playing a major role in the reduction of metallic nanoparticles such as silver and gold, as it emerges as an eco-friendly and exciting approach in nanotechnology. We report on the biological synthesis of gold nanoparticles using the culture supernatant of Bacillus subtilis and its effect on increased antibacterial and antifungal activities against clinically isolated organism. When the supernatant of Bacillus subtilis was added to HAuCl4 aqueous solution, HAuCl4 was reduced as Au+ ions, which confirmed the presence of nanoparticles by the color change of pale yellow to purple. The minimum and maximum peaks were observed at 24th and 120th hours by UV-Visible spectroscopy. The combined antibacterial and antifungal activities with various antibiotics were observed against clinical isolates.
[References]
  1. Armendariz V, Herrera I, Peralta-Videa JR, Jose-Yacaman M, Troiani H, Santiago P, Gardea-Torresdey JL, J. Nanopart. Res., 6, 377, 2004
  2. Guoa S, Wang E, Anal. Chim. Acta., 598, 181, 2007
  3. Husseiny MI, Abd El-Aziz M, Badr Y, Mahmoud MA, Spectrochim. Acta Part A., 67, 1003, 2007
  4. Song JY, Kim BS, Bioprocess Biosyst. Eng., 32(1), 79, 2008
  5. Gericke M, Pinches A, Gold Bull., 39, 22, 2006
  6. Klaus T, Joerger R, Olsson E, Granqvist CG, Proc. Nat.Acad. Sci. U.S.A., 96, 13611, 1999
  7. Reeves RD, Baker AJM, Metal-accumulating plants, In Raskin I. and Ensley B. D. Eds., 193, 2000
  8. Gardea-Torresdey JL, Parsons J, Gomez E, Peralta-Videa J, Troiani E, Santiago P, Yacaman M, Nano Lett., 2, 397, 2002
  9. Gardea-Torresdey JL, Rodriguez E, Parsons JG, Peralta-Videa JR, Meitzner G, Cruz-Jimenez G, Anal. Bioanal.Chem., 382, 347, 2005
  10. Beveridge TJ, Murray RGE, J. Bacteriol., 141, 876, 1980
  11. Reddy AS, Chen CY, Chen CC, Jean JS, Chen HR, Tseng MJ, Fan CW, Wang JC, J. Nanosci. Nanotechnol., 10, 6567, 2010
  12. Balagurunathan R, Radhakrishnan M, Baburajendran R, Velmurugan D, Indian J. Biochem. Biophys., 48, 331, 2011
  13. Zawrah MF, El-Moez SIA, Life Sci. J., 8(4), 102, 2011
  14. Asharani PV, Lianwu Y, Gong Z, Valiyaveettil S, Nanotoxicol., 5, 43, 2011
  15. Burygin GL, Khlebtsov BN, Shantrokha AN, Dykman LA, Bogatyrev VA, Khlebtsov NG, Nanoscale Res.Lett., 4, 794, 2009
  16. Pissuwan D, Valenzuela SM, Miller CM, Cortie MB, Nano Lett., 7, 3808, 2007
  17. Huang WC, Tsai PJ, Chen YC, Nanomedicine., 2, 777, 2007
  18. Zharov VP, Mercer KE, Galitovskaya EN, Smeltzery MS, Biophys. J., 90, 619, 2006
  19. Williams DN, Ehrman SH, Holoman TRP, J. Nanobiotechnol., 4, 3, 2006
  20. Gu H, P. Ho L, Tong E, Wang L, Xu B, Nano Lett., 3, 1261, 2003
  21. Lee SM, Song KC, Lee BS, Korean J. Chem. Eng., 27(2), 688, 2010
  22. Gajbhiye M, Kesharwani J, Ingle A, Gade A, Rai M, Nanomedicine: Nanotechnology, Biology and Medicine., 5, 382, 2009
  23. Shahverdi AR, Fakhimi A, PharmD, Shahverdi HR, Minaian S, Nanomedicine: Nanotechnology, Biology and Medicine., 3, 168, 2007
  24. Zhang YW, Peng HS, Huang W, Zhou YF, Yan DY, J. Colloid Interface Sci., 325(2), 371, 2008
  25. Grace AN, Pandian K, Colloids and Surfaces A: Physicochem. Eng. Aspects., 297, 63, 2007
  26. Zhang H, Chen G, Environ. Sci. Technol., 43, 2905, 2009