Issue
Korean Journal of Chemical Engineering,
Vol.29, No.11, 1500-1507, 2012
Energy efficiency improvement of dimethyl ether purification process by utilizing dividing wall columns
The alternative fuel, dimethyl ether (DME), which can be synthesized from natural gas, coal or biomass syngas, has been traditionally used as a diesel substitute or additive. DME purification processes with a conventional distillation sequence consume a large amount of energy. We used dividing wall columns (DWCs) to improve the energy efficiency and reduce the capital cost of the DME purification process. Various possible DWC arrangements were explored to find the potential benefits derived from thermally coupled distillations. The results show that utilizing DWCs can significantly reduce both the energy consumption and investment cost of the DME purification process. The lower energy consumption also results in the reduction of the CO2 emission.
[References]
  1. Ng HD, Chao J, Yatsufusa T, Lee JHS, Fuel., 88, 124, 2008
  2. Hu JL, Wang Y, Cao CS, Elliott DC, Stevens DJ, White JF, Ind. Eng. Chem. Res., 44(6), 1722, 2005
  3. Larson ED, Yang H, Energy Sustain Dev., 8, 115, 2004
  4. Fleisch TH, Diesel Prog. Engines Drives., 61, 42, 1995
  5. Galvita VV, Semin GL, Belyaev VD, Yurieva TM, Sobyanin VA, Appl. Catal. A: Gen., 216(1-2), 85, 2001
  6. Semelsberger TA, Borup RL, Greene HL, J. Power Sources., 156, 497, 2005
  7. Vakili R, Pourazadi E, Setoodeh P, Eslamloueyan R, Rahimpour MR, Appl. Energy, 88(4), 1211, 2011
  8. Stiefel M, Ahmad R, Arnold U, Doring M, Fuel Process. Technol., 92(8), 1466, 2011
  9. Hadipour A, Sohrabi M, Chem. Eng. J., 137(2), 294, 2008
  10. Gadalla MA, Olujic Z, Jansens PJ, Jobson M, Smith R, Environ. Sci. Technol., 39, 6860, 2005
  11. Gutierrez-Guerra R, Segovia-Hernandez JG, Hernandez S, Chem. Eng. Res. Des., 87(2A), 145, 2009
  12. Agrawal R, Fidkowski ZT, AIChE J., 44(11), 2565, 1998
  13. Dejanovic I, Matijasevic L, Olujic Z, Chem. Eng. Process., 49(6), 559, 2010
  14. Emtir M, Rev E, Mizsey P, Fonyo Z, Comput. Chem. Eng., 23, 799, 1999
  15. Fidkowski ZT, Krolikowski L, AIChE J., 33, 654, 1987
  16. Muralikrishna K, Madhavan VKP, Shah SS, Trans IChemE., 80, 155, 2002
  17. van Diggelen RC, Kiss AA, Heemink AW, Ind. Eng. Chem. Res., 49(1), 288, 2010
  18. Agrawal R, Fidkowski ZT, Ind. Eng. Chem. Res., 37(8), 3444, 1998
  19. Ammidunin KA, Smith R, Thong DYC, Towler GP, Trans IChemE., 79, 701, 2001
  20. Bravo-Bravo C, Segovia-Hernandez JG, Gutierrez-Antonio C, Duran AL, Bonilla-Petriciolet A, Briones-Ramirez A, Ind. Eng. Chem. Res., 49(8), 3672, 2010
  21. Karlsen AE, Esmaelpour A, Osmani K, Plunnecke KSB (cosupervisor: Mehdi Panahi) and Sigurd Skogestad, DME from natural gas (Autumn project) (2009), http://www.nt.ntnu.no/users/skoge/diplom/prosjekt09/dme-project/
  22. Chang E, Calado JCG, Streett WB, J. Chem. Eng. Data., 27, 293, 1982
  23. Tsang CY, Streett WB, J. Chem. Eng. Data., 26, 155, 1981
  24. Teodorescu M, Rasmussen P, J. Chem. Eng. Data., 46, 640, 2001
  25. Premkumar R, Rangaiah GP, Chem. Eng. Res. Des., 87(1A), 47, 2009
  26. Biegler LT, Grossmann IE, Westerberg AW, Systematic methods of chemical process design, Prentice Hall Inc.: Upper Saddle River, New Jersey, 110, 1997
  27. Long NVD, Lee S, Lee M, Chem. Eng. Process., 49(8), 825, 2010
  28. Long NVD, Lee MY, Asia-Pac. J. Chem. Eng., 6, 338, 2011
  29. Emtir M, Rev E, Fonyo Z, Appl. Therm. Eng., 21, 1299, 2001
  30. Triantafyllou C, Smith R, Chem. Eng. Res. Des., 70, 118, 1992
  31. Lee SH, Shamsuzzoha M, Han M, Kim YH, Lee M, Korean J. Chem. Eng., 28(2), 348, 2011
  32. Finn AJ, Gas Sep. Purif., 10(3), 169, 1996
  33. Long NVD, Lee MY, Comput. Chem. Eng., 37, 119, 2012