Issue
Korean Journal of Chemical Engineering,
Vol.29, No.10, 1329-1335, 2012
Carbon dioxide reforming of methane to synthesis gas over LaNi1-xCrxO3 perovskite catalysts
Carbon dioxide reforming of methane was investigated over LaNi1-xCrxO3 perovskite catalysts which were prepared by the malic acid method. The respective perovskite catalysts were a single phase of perovskite oxide without impurity phases. Their reduction behavior was characterized by temperature programmed reduction. In the LaNi1-xCrxO3 perovskite catalysts, the catalytic activities were closely related to the reduction behavior of the catalysts, and the partial substitution of Cr to the B-site of perovskite catalysts promoted stability against reduction. When the x values were lower than 0.4, the LaNi1-xCrxO3 perovskite catalysts were decomposed to La2O3 and Ni and the decomposition of perovskite structure led to large coke deposition. When the x values were higher than 0.4, the LaNi1-xCrxO3 perovskite catalysts showed reduced catalytic activity but became stable to reduction and coke formation in the reforming reaction.
[References]
  1. Hu YH, Ruckenstein E, Adv. Catal., 48, 297, 2004
  2. Fan MS, Abdullah AZ, Bhatia S, ChemCatChem., 1, 192, 2009
  3. Ashcroft AT, Cheetham AK, Green MLH, Vernon PDF, Nature., 452, 225, 1991
  4. Fox JM, Catal. Rev. Sci. Eng., 35, 169, 1993
  5. Rostrup-Nielsen JR, Hansen JHB, J. Catal., 144, 38, 1993
  6. Zhang Z, Verykios XE, J. Chem. Soc., Chem. Commun., 71, 1995
  7. Hu YH, Ruckenstein E, J. Catal., 163(2), 306, 1996
  8. Bhat RN, Sachtler WM, Appl. Catal. A: Gen., 150(2), 279, 1997
  9. Wang HY, Au CT, Appl. Catal. A: Gen., 155(2), 239, 1997
  10. Stagg SM, Romeo E, Padro C, Resasco DE, J. Catal., 178(1), 137, 1998
  11. Bradford MCJ, Vannice MA, J. Catal., 183(1), 69, 1999
  12. Bradford MCJ, Vannice MA, Catal. Rev.-Sci. Eng., 41(1), 1, 1999
  13. de Araujo GC, de Lima SM, Assaf JM, Pena MA, Fierro JLG, Rangel MC, Catal. Today., 133-135, 129, 2008
  14. Chen YG, Ren J, Catal. Lett., 29(1-2), 39, 1994
  15. Choudhary VR, Uphade BS, Mamman AS, Catal. Lett., 32(3-4), 387, 1995
  16. Choudhary VR, Uphade BS, Belhekar AA, J. Catal., 163(2), 312, 1996
  17. Zhang ZL, Verykios XE, Macdonald SM, Affrossman S, J. Phys. Chem., 100(2), 744, 1996
  18. Zhang ZL, Verykios XE, Appl. Catal. A: Gen., 138(1), 109, 1996
  19. Cheng ZX, Wu QL, Li JL, Zhu QM, Catal. Today, 30(1-3), 147, 1996
  20. Choudhary VR, Rajput AM, Ind. Eng. Chem. Res., 35(11), 3934, 1996
  21. Kim H, Lee SJ, Song KS, Korean J. Chem. Eng., 24(3), 477, 2007
  22. Solymosi F, Kutsan G, Erdohelyi A, Catal. Lett., 11, 149, 1991
  23. Erdohelyi A, Cserenyi E, Solymosi F, J. Catal., 141, 287, 1993
  24. Qin D, Lapszewicz J, Catal. Today., 21, 551, 1994
  25. Mark MF, Maier WF, J. Catal., 164(1), 122, 1996
  26. Nagaoka K, Takanabe K, Aika K, Appl. Catal. A: Gen., 268(1-2), 151, 2004
  27. Hou ZY, Chen P, Fang HL, Zheng XM, Yashima T, Int.J. Hydrog. Energy., 31, 555, 2006
  28. Sauvet A, Guindet J, Fouletier J, IONICS., 5, 150, 1999
  29. Rivas ME, Fierro JLG, Goldwasser MR, Pietri E, Perez-Zurita MJ, Griboval-Constant A, Leclercq G, Appl. Catal. A: Gen., 344(1-2), 10, 2008
  30. Stojanovic M, Haverkamp RG, Mims CA, Moudallal H, Jacobson AJ, J. Catal., 166(2), 315, 1997
  31. Wu Y, Kawaguchi O, Matsuda T, Bull. Chem. Soc. Jpn., 71, 563, 1998
  32. Valderrama G, Kiennemann A, Goldwasser MR, Catal. Today., 133-135, 142, 2008
  33. Nakamura T, Petzow G, Gauckler LJ, Mater. Res. Bull., 14, 649, 1979
  34. Erning JW, Hauber T, Stimming U, Wippermann K, J. Power Sources., 61, 205, 1996
  35. Fierro JLG, Tejuca LG, Appl. Surf. Sci., 27, 453, 1987
  36. Tejuca LG, Fierro JLG, Thermochim. Acta., 147, 361, 1989
  37. Provendier H, Petit C, Estournes C, Libs S, Kiennemann A, Appl. Catal. A: Gen., 180(1-2), 163, 1999
  38. Trimm DL, Catal. Rev. Sci. Eng., 16, 155, 1977