Issue
Korean Journal of Chemical Engineering,
Vol.29, No.12, 1713-1721, 2012
Rheology and fuel properties of slurries of char and bio-oil derived from slow pyrolysis of cassava pulp residue and palm shell
Three bio-oil samples, namely, raw bio-oil from pyrolysis of cassava pulp residue (CPR), separated oil phase and aqueous phase of bio-oil from pyrolysis of palm shell (PS), were used as suspending media for preparing slurries of bio-oil and the co-product char. Rheologies of all tested slurries exhibited pseudoplasticity with yield stress and the degree of this non-Newtonian behavior depended on such parameters as slurry type, solid concentration, particle size and slurry temperature. Overall, char/bio-oil slurries gave better fuel properties including higher pH and reasonably high calorific value (18-32 MJ/kg) as compared to their bio-oil properties. Combustion of char/bio-oil slurries occurred in the temperature range similar to their solid char combustion and without ignition delay.
[References]
  1. Dynamotive Energy Systems Cooperation 2009. Technology [Online]. Avaliable: http://www.dynamotive.com.
  2. McKendry P, Bioresour. Technol., 83(1), 55, 2002
  3. Liu Q, Wang S, Wang K, Luo Z, Cen K, Korean J. Chem. Eng., 26(2), 548, 2009
  4. Choi HS, Choi YS, Park HC, Korean J. Chem. Eng., 27(4), 1164, 2010
  5. Park HJ, Heo HS, Yim JH, Jeon JK, Ko YS, Kim SS, Park YK, Korean J. Chem. Eng., 27(1), 73, 2010
  6. Bridgwater AV, Chem. Eng. J., 91(2-3), 87, 2003
  7. Oasmaa A, Czernik S, Energy Fuels., 13, 914, 1994
  8. Weerachanchai P, Tangsathitkulchai C, Tangsathitkulchai M, Korean J. Chem. Eng., 28(12), 2262, 2011
  9. He RH, Ye P, English BC, Satrio JA, Bioresour. Technol., 100(21), 5305, 2009
  10. Zheng JL, Yi WM, Wang NN, Energy Conv. Manag., 49(6), 1724, 2008
  11. Schramm G, A practical approach to rheology and rheometry, Gebrueder HAAKE Gmbh, Karlsruhe, Germany, 1994
  12. Lachemet A, Touil D, Belaadi S, Bentaieb N, J. Appl. Sci., 8, 3485, 2008
  13. Logos C, Nguyen QD, Powder Technol., 88(1), 55, 1996
  14. Gu TY, Wu GG, Li QH, Sun ZQ, Zeng F, Wang GY, Meng XL, J. China Univ. Min. Technol., 18, 50, 2008
  15. Cheng J, Zhou JH, Li YC, Liu JZ, Cen KF, Fuel, 87(12), 2620, 2008
  16. He MZ, Wang YM, Forssberg E, Powder Technol., 147(1-3), 94, 2004
  17. Shi FN, Napier-Munn TJ, Int. J. Miner. Process., 65(3-4), 125, 2002
  18. Guo DH, Li XC, Yuan JS, Jiang L, Fuel, 77(3), 209, 1998
  19. Cui L, An L, Hang H, Fuel, 87(10-11), 2296, 2008
  20. Majumder SK, Chandna K, De DS, Kundu G, Int. J. Miner. Process., 79(4), 217, 2006
  21. Tangsathitkulchai C, Austin LG, Powder Technol., 56, 293, 1988
  22. Shin YJ, Shen YH, Chemosphere., 68, 389, 2007
  23. Lapcik L, Lapcikova B, Filgasova G, Colloid. Polym. Sci., 278, 65, 2000
  24. Mosa ES, Saleh AM, Taha TA, El-Molla AM, Physicochem. Probl. Mi., 42, 107, 2008
  25. Olhero SM, Ferreira JMF, Powder Technol., 139(1), 69, 2004
  26. Aktas Z, Woodburn ET, Fuel Process. Technol., 62(1), 1, 2000
  27. He MZ, Wang YM, Forssberg E, Int. J. Miner. Process., 78(2), 63, 2006