Issue
Korean Journal of Chemical Engineering,
Vol.29, No.9, 1151-1157, 2012
CO oxidation over CuO catalysts prepared with different precipitants
CuO catalysts, prepared by the precipitation method using different precipitants such as ammonium hydroxide, sodium hydroxide, sodium carbonate and sodium hydrogen carbonate were applied to CO oxidation. Among the catalysts studied, CuO synthesized with sodium hydrogen carbonate showed the highest activity for CO oxidation. With the water vapor present in the feed gas, the catalytic activity decreased considerably due to reduction in the number of active sites by competitive adsorption between water vapor and CO. The H2-TPR and CO-TPD results showed that existing Na+ cations and HCO3- and CO32- anions on the CuO surface could weaken the copper-oxygen bond strength and accelerate the mobility of oxygen on the surface or lattice. Finally, the morphology of the CuO crystals was dependent on the precipitants, and the introduction of Na+ cations and various anions resulted in the formation of smaller crystals.
[References]
  1. Royer S, Duprez D, Chem. Cat. Chem., 3, 24, 2011
  2. Valdes-Solis T, Lopez I, Marban G, Int. J. Hydrog. Energy., 35, 1879, 2010
  3. Luo MF, Zhong YJ, Yuan XX, Zheng XM, Appl. Catal. A: Gen., 162(1-2), 121, 1997
  4. Fortunato G, Oswald HR, Reller A, J. Mater. Chem., 11, 905, 2001
  5. Veprek S, Cocke DL, Kehl S, Oswald HR, J. Catal., 100, 250, 1986
  6. Zhu PF, Li J, Zuo SF, Zhou RX, Appl. Surf. Sci., 255(5), 2903, 2008
  7. Tanaka H, Kuriyama M, Ishida Y, Ito SI, Kubota T, Miyao T, Naito S, Tomishige K, Kunimori K, Appl. Catal. A: Gen., 343(1-2), 125, 2008
  8. Minemura Y, Kuriyama M, Ito S, Tomishige K, Kunimori K, Catal. Commun., 7, 623, 2006
  9. Mirkelamoglu B, Karakas G, Appl. Catal. A: Gen., 299, 84, 2006
  10. Xue L, Zhang CB, He H, Teraoka Y, Catal. Today, 126(3-4), 449, 2007
  11. Pasha N, Lingaiah N, Reddy PSS, Prasad PSS, Catal. Lett., 127(1-2), 101, 2009
  12. Zhang C, Bai Y, Yin Y, Gu J, Sun Y, Korean J. Chem. Eng., 28(2), 602, 2011
  13. http://en.wikipedia.org/wiki/Ionic_radius.
  14. Fernandez R. Estelle J, Cesteros Y, Salagre P, Medina F, Sueiras J, Fierro JG, J. Mol. Catal. A: Chem., 119, 77, 1997
  15. Ohnishi C, Asano K, Iwamoto S, Chikama K, Inoue M, Catal. Today, 120(2), 145, 2007
  16. Holgado JP, Munuera G, Espinos JP, Gonzalez-Elipe AR, Appl. Surf. Sci., 158(1-2), 164, 2000
  17. Park WJ, Jeong HJ, Yoon WL, Kim CS, Lee DK, Park YK, Rhee YW, Int. J. Hydrog. Energy., 30, 209, 2005
  18. Avgouropoulos G, Ioannides T, Matralis H, Appl. Catal. B: Environ., 56(1-2), 87, 2005
  19. Luo MF, Ma JM, Lu JQ, Song YP, Wang YJ, J. Catal., 246(1), 52, 2007
  20. Dow WP, Wang YP, Huang TJ, J. Catal., 160(2), 155, 1996
  21. Wu Z, Zhu H, Qin Z, Wang H, Ding J, Huang L, Wang J, Fuel., http://dx.doi.org/10.1016/j.fuel.2010.03.001.
  22. Ramesh K, Chen LW, Chen FX, Liu Y, Wang Z, Han YF, Catal. Today, 131(1-4), 477, 2008
  23. Morgan K, Cole KJ, Goguet A, Hardacre C, Hutchings GJ, Maguire N, Shekhtman SO, Taylor SH, J. Catal., 276(1), 38, 2010
  24. Hasegawa Y, Fukumoto K, Ishima T, Yamamoto H, Sano M, Miyake T, Appl. Catal. B: Environ., 89(3-4), 420, 2009
  25. Gurbani A, Ayastuy JL. Gonzalez-Marcos MP, Gutierrez-Ortiz MA, Int. J. Hydrog. Energy., 35, 11582, 2010
  26. Cho KH, Park JH, Shin CH, Clean Technol., 16(2), 132, 2010
  27. Lianjun L, Qiang Y, Jie Z, Haiqin W, Keqin S, Bin L, Haiyang Z, Fei G, Lin D, Chen X, J. Colloid Interf. Sci., 195, 236, 2002
  28. Lei L. Li S, Haidong W, Chongqi C, Yusheng S, Yingying Z, Xingyi I, Qi Z, Int. J. Hydrog. Energy., 36, 8839, 2011