Issue
Korean Journal of Chemical Engineering,
Vol.29, No.6, 769-774, 2012
Degradation of carbon tetrachloride in modified Fenton reaction
We showed that the dechlorination of carbon tetrachloride (CT) can be significantly enhanced at nearneutral pH by modified Fenton reaction in the presence of Fe(II) chelated by cross-linked chitosan (CS) with glutaraldehyde (GLA). CT dechlorination was verified by monitoring the release of chloride and detection of intermediates such as trichloromethane and dichloromethane in the modified Fenton system with Fe(II) chelated by cross-linked CS with GLA (Fe(II)-CS/GLA). Measured chlorine mass balance of each sample was greater than 91% of total chlorine mass corresponding to initial CT concentration throughout the reaction. Addition of hydroxyl radical scavenger (2-propanol) enhanced the CT degradation in 5 h at near-neutral pH (removal efficiency from 57.2% to 92.4%), while the addition significantly inhibited trichloroethylene (TCE) degradation at the same condition (74.7% to 19.9%). This implies that, in contrast to the dechlorination of TCE, that of CT did not follow an oxidative dechlorination pathway but a reductive dechlorination pathway in the modified Fenton system with Fe(II)-CS/GLA. Dechlorination kinetics of CT in the modified Fenton system was affected by the concentrations of H2O2, Fe(II), and CT. The formation of surface Fe(II)-CS/GLA complex and its valence change from Fe(II) to Fe(III) observed during the modified Fenton reaction gave a clue to identify the proposed reaction mechanism properly.
[References]
  1. Pignatello JJ, Oliveros E, MacKay A, Crit. Rev. Env. Sci. Technol., 36, 1, 2006
  2. Teel AL, Watts RJ, J. Hazard. Mater., 94(2), 179, 2002
  3. Buxton GV, Greenstock CL, Helman WP, Ross AB, J.Phys. Chem. Ref. Data., 17, 513, 1988
  4. Smith BA, Teel AL, Watts RJ, Environ. Sci. Technol., 38, 5465, 2004
  5. Sun YF, Pignatello JJ, J. Agric. Food Chem., 40, 322, 1992
  6. Furman O, Laine DF, Blumenfeld A, Teel AL, Shimizu K, Cheng IF, Watts RJ, Environ. Sci. Technol., 43, 1528, 2009
  7. Watts RJ, Dilly SE, J. Hazard. Mater., 51, 209, 1996
  8. Ravikumar JX, Gurol MD, Environ. Sci. Technol., 28, 394, 1994
  9. Kwan WP, Voelker BM, Environ. Sci. Technol., 37, 1150, 2003
  10. Smith BA, Teel AL, Watts RJ, J. Contam. Hydrol., 85, 229, 2006
  11. Vincent T, Spinelli S, Guibal E, Ind. Eng. Chem. Res., 42(24), 5968, 2003
  12. Vincent T, Guibal E, Environ. Sci. Technol., 38, 4233, 2004
  13. Blondet FP, Vincent T, Guibal E, Int. J. Biol. Macromol., 43, 69, 2008
  14. Sulakova R, Hrdina R, Soares GMB, Dyes Pigm., 73, 19, 2007
  15. Guibal E, Vincent T, Touraud E, Colombo S, Ferguson A, J. Appl. Polym. Sci., 100(4), 3034, 2006
  16. Macquarrie DJ, Hardy JJE, Ind. Eng. Chem. Res., 44(23), 8499, 2005
  17. Huang QZ, Wang SM, Huang JF, Zhuo LH, Guo YC, Carbohydr. Polym., 68, 761, 2007
  18. Lee Y, Lee W, J. Hazard. Mater., 178(1-3), 187, 2010
  19. Lee W, Batchelor B, Environ. Sci. Technol., 37, 535, 2003
  20. Ngah WSW, Ab Ghani S, Kamari A, Bioresour. Technol., 96(4), 443, 2005
  21. Chen G, Hoag GE, Chedda P, Nadim F, Woody BA, Dobbs GM, J. Hazard. Mater., 87(1-3), 171, 2001
  22. Maithreepala RA, Doong RA, Environ. Sci. Technol., 24, 6676, 2004
  23. Doong RA, Wu SC, Chemosphere., 24, 1063, 1992
  24. Walling C, Acc. Chem. Res., 8, 125, 1975
  25. Che H, Lee W, Chemosphere., 82, 1103, 2011
  26. Roberts JL, Sawyer DT, JACS., 103, 712, 1981
  27. Stark J, Rabani J, J. Phys. Chem. B, 103(40), 8524, 1999
  28. Watts RJ, Bottenberg BC, Hess TF, Jensen MD, Teel AL, Environ. Sci. Technol., 33, 3432, 1999
  29. Siedlecka EM, Mrozik W, Kaczynski Z, Stepnowski P, J. Hazard. Mater., 154(1-3), 893, 2008
  30. Ono Y, Matsumura T, Kitajima N, Fukuzumi S, J. Phys.Chem., 81, 1307, 1977
  31. Zhou H, Shen YF, Wang JY, Chen X, O'Young CL, Suib SL, J. Catal., 176(2), 321, 1998