Issue
Korean Journal of Chemical Engineering,
Vol.29, No.6, 716-723, 2012
Input/output linearization with a two-degree-of-freedom scheme for uncertain nonlinear processes
This work presents a new method to control processes with unmeasured input disturbance and random noise parametric uncertainty. The developed method takes advantage of a two-degree-of-freedom control structure in which setpoint regulation and load disturbance rejection are integrated in the controller synthesis. Input/output linearization is selected to provide the setpoint tracking ability. For disturbance rejection, the high-gain technique is used to compensate for the effect of the uncertainty. The control performance of the method is evaluated through numerical simulation of continuous stirred tank reactors with uncertainty. The simulation results show that both unmeasured disturbance and parametric uncertainty can be effectively compensated for by the proposed control method.