Issue
Korean Journal of Chemical Engineering,
Vol.29, No.6, 731-736, 2012
Structural and photoelectrochemical characterization of TiO2 nanowire/nanotube electrodes by electrochemical etching
TiO2 nanowire/nanotube electrodes were synthesized by anodization of titanium foils in ethylene glycol solution containing 0.5 wt% NH4F and 1 wt% water at 60 V for 6 h. The microstructure and morphology of the asprepared electrodes were investigated by XRD and SEM. A possible formation mechanism and oxidation parameters of nanocomposite structure were discussed. The relationship between structural characteristics of TiO2 nanowire/nanotube electrodes and its photoelectrochemical characterization were evaluated by electrochemical analyzer and photocatalytic degradation of methylene blue (MB) solution. Furthermore, these TiO2 nanowire/nanotube electrodes promoted the photoelectrochemical characterization due to the larger surface areas, enhanced light harvesting and electron transport rate. The results show that photocurrent density of 1.44mA/cm2 and photocatalytic degradation of 95.51% was achieved for TiO2 nanowire/nanotube electrodes, which were 0.55mA/cm2 and 20.52% higher than the TiO2 nanotube electrodes under a similar condition, respectively.
[References]
  1. Raja KS, Mahajan VK, Misra M, J. Power Sources, 159(2), 1258, 2006
  2. Mor GK, Shankar K, Paulose M, Nano Lett., 5, 191, 2005
  3. Bahnemann DW, Kholuiskaya SN, Dillert R, Appl. Catal.B., 32, 161, 2002
  4. Kiss J, Ovari L, Oszkoa A, Surface Sci., 605, 1048, 2011
  5. Baxter JB, Aydil ES, Sol. Energy Mater. Sol. Cells., 90, 607, 2006
  6. Qui JJ, Jin ZG, Liu ZF, Liu XX, Liu GQ, Wu WB, Zhang X, Gao XD, Thin Solid Films, 515(5), 2897, 2007
  7. Hosono E, Fujihara S, Honna I, Zhou HS, Adv. Mater., 17(17), 2091, 2005
  8. Macak JM, Tsuchiya H, Ghicov A, Electrochem. Commun., 7, 1133, 2005
  9. Varghese OK, Gong DW, Paulose M, Sens. Actuators, B., 93, 338, 2003
  10. Malwadkar SS, Gholap RS, Awate SV, J. Photochem.Photobiol., A., 203, 24, 2009
  11. Paulose M, Mor GK, Varghese OK, J. Photochem. Photobiol.,A., 178, 8, 2006
  12. Idakiev V, Yuan ZY, Tabakova T, Su BL, Appl. Catal. A: Gen., 281(1-2), 149, 2005
  13. Taveira LV, Macak JM, Tsuchiya H, Dick LFP, Schmuki P, J. Electrochem. Soc., 152(10), B405, 2005
  14. Wang YH, Yang HX, Xu HM, Mater. Lett., 64, 164, 2010
  15. Pang XY, He DM, Luo SL, Sens. Actuators, B., 137, 134, 2009
  16. Ruan CM, Paulose M, Varghese OK, Mor GK, Grimes CA, J. Phys. Chem. B, 109(33), 15754, 2005
  17. Inoue M, Murase A, Surf. Interface Anal., 37, 1111, 2005
  18. Paulose M, Shankar K, Yoriya S, Prakasam HE, Varghese OK, Mor GK, Latempa TA, Fitzgerald A, Grimes CA, J. Phys. Chem. B, 110(33), 16179, 2006
  19. Grimes CA, J. Phys. Chem., 15, 1451, 2007
  20. Allam NK, Grimes CA, Sol. Energy Mater. Sol. Cells., 92, 1468, 2008
  21. Lim JH, Choi J, Small., 3, 1504, 2007
  22. Das PP, Mohapatra SK, Misra M, J. Phys. D: Appl. Phys., 41, 245103, 2008
  23. Xiao ZL, Han CY, Welp U, Nano Lett., 2, 1293, 2002
  24. Kim D, Ghicov A, Schmuki P, Electrochem. Commun., 10, 1835, 2008
  25. Sun LD, Zhang S, Sun XW, J. Electroanal. Chem., 637, 6, 2009
  26. Wang J, Lin ZQ, Chem. Mater., 20, 1257, 2008
  27. Raja KS, Gandhi T, Misra M, Electrochem. Commun., 9, 1069, 2007
  28. Chen W, Zhang HG, Hsing IM, Electrochem. Commun., 11, 1057, 2009
  29. Wu ZB, Guo S, Wang HQ, Electrochem. Commun., 11, 1692, 2009
  30. Jang JS, Kim HG, Joshi UA, Int. J. Hydrog. Energy., 33, 5975, 2008
  31. Yao WT, Yu SH, Liu SJ, Chen JP, Liu XM, Li FQ, J. Phys. Chem. B, 110(24), 11704, 2006
  32. Wu ZB, Dong F, Zhao WR, Nanotechnology., 20, 5701, 2009
  33. Lu B, Li H, Liao L, Nanotechnology., 19, 5605, 2008