Issue
Korean Journal of Chemical Engineering,
Vol.29, No.3, 356-361, 2012
Effect of an electrodeposited TiO2 blocking layer on efficiency improvement of dye-sensitized solar cell
A TiO2 blocking layer in DSSC provides good adhesion between the fluorinated tin oxide (FTO) and an active TiO2 layer, and represses the electron back transport between electrolyte and FTO by blocking direct contact. In addition, it offers a more uniform layer than bare FTO glass. In this study, a dense TiO2 layer is prepared by electrodeposition technique onto an FTO substrate, and it is further used for efficiency measurement of dye-sensitized solar cell (DSSC). The thickness of TiO2 blocking layers is controlled by applied voltage and deposition time. The morphology and crystalline structure of TiO2 blocking layers are characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM) and X-ray diffraction (XRD). The effect of thickness of TiO2 blocking layers on transmittance is also examined by UV-vis spectrophotometer. For the best performance of the cell efficiency, the optimum blocking layer thickness is about 450 nm fabricated at 0.7 V for 20 min. The conversion efficiency from the DSSC including the optimum blocking layer is 59.34% improved compared to the reference cell from 2.41% to 3.84%. It demonstrates that the electrodeposition is a useful method to produce TiO2 blocking layer for DSSC applications.
[References]
  1. Rhee SW, Kwon W, Korean J. Chem. Eng., 28(7), 1481, 2011
  2. Gratzel M, J. Photochem. Photobiol. C: Photochemistry Reviews., 4, 145, 2003
  3. Hong E, Kim JH, Yu S, Kim JH, Korean J. Chem. Eng., 28(8), 1684, 2011
  4. Yang DJ, Yang SC, Hong JM, Lee H, Kim ID, Journal of Electroceramics., 24, 200, 2010
  5. Lee DH, Lee MJ, Song HM, Song BJ, Seo KD, Pastore M, Anselmi C, Fantacci S, De Angelis F, Nazeeruddin MK, Graetzel M, Kim HK, Dyes Pigm., 91, 192, 2011
  6. Yoo B, Kim KJ, Bang SY, Ko MJ, Kim K, Park NG, J. Electroan. Chem., 638, 161, 2010
  7. Bills B, Shanmugam M, Baroughi MF, Thin Solid Films., 519, 7803, 2011
  8. Palomares E, Clifford JN, Haque SA, Lutz T, Durrant JR, J. Am. Chem. Soc., 125(2), 475, 2003
  9. Wang HF, Chen LY, Su WN, Chung JC, Hwang BJ, J.Phys. Chem. C., 114, 3185, 2010
  10. Jeong JA, Kim HK, Solar Energy Materials and Solar Cells., 5, 64, 2010
  11. Meng L, Li C, Nanosci. Nanotechnol. Letters., 3, 181, 2011
  12. Han K, Kim JH, Mater. Letters., 65, 2466, 2011
  13. Wang SJ, Xu YX, Ma M, Fan TL, Materials Science Forum., 663, 848, 2011
  14. Cameron PJ, Peter LM, J. Phys. Chem. B, 107(51), 14394, 2003
  15. Ito S, Liska P, Comte P, Charvet R, Pechy P, Bach U, Schmidt-Mende L, Zakeeruddin SM, Kay A, Nazeeruddin MK, Gratzel M, Chem. Commun., 34, 4351, 2005
  16. Kuo CY, Lien SY, Wu ZS, Shieu FS, Chen CF, Nanosci.Nanotechnol. Letters., 3, 195, 2011
  17. Hart JN, Menzies D, Cheng YB, Simon GP, Spiccia L, Comptes Rendus Chimie., 9, 622, 2006
  18. Wessels K, Wark M, Oekermann T, Electrochim. Acta, 55(22), 6352, 2010
  19. Mukhopadhyay I, Aravinda CL, Borissov D, Freyland W, Electrochim. Acta, 50(6), 1275, 2005
  20. Huang CC, Hsu HC, Hu CC, Chang KH, Lee YF, Electrochim. Acta, 55(23), 7028, 2010
  21. Hu CC, Huang CC, Chang KH, Electrochem. Commun., 11, 434, 2009
  22. Lokhande CD, Park BO, Park HS, Jung KD, Joo OS, Ultramicroscopy., 105, 267, 2005
  23. Lokhande CD, Min SK, Jung KD, Joo OS, J. Mater. Sci., 39(21), 6607, 2004
  24. Wu MS, Wang MJ, Jow JJ, Yang WD, Hsieh CY, Tsai HM, J. Power Sources, 185(2), 1420, 2008
  25. Fatas E, Herrasti P, Arjona F, Camarero EG, Medina J, Electrochim.Acta., 32, 139, 1987
  26. Chang H, Su HT, Chen WA, David Huang K, Chien SH, Chen SL, Chen CC, AAPG Bull., 84, 130, 2010
  27. Wu M, Yang ZH, Jiang YH, Zhang JJ, Liu SQ, Sun YM, J. Solid State Electrochem., 14, 857, 2010
  28. Seigo I, Mohammad K, Int. J. Photoenergy., 2009, 8, 2009