Issue
Korean Journal of Chemical Engineering,
Vol.29, No.4, 540-548, 2012
Experimental and numerical investigation on the pyrolysis of single coarse lignite particles
This paper reports on the mathematical modeling of the pyrolysis of single coarse lignite particles using a kinetics model coupled with a heat transfer model. The parallel reaction kinetics model of the lignite pyrolysis makes no assumptions about the activation energy distribution and the conversion of sub-reactions. The pyrolysis kinetics parameters were obtained on the basis of experimental data from thermogravimetric analysis (TGA) tests. The heat transfer model includes diffusive, convective and radiative heat transfer modes. The experimental investigations were carried out for single lignite particles in an electrically heated reactor. Measurements of the temperature and mass loss were performed during the pyrolysis in a nitrogen atmosphere. The model predictions for the temperature and mass loss histories agree well with the experimental data, verifying that the mathematical model accurately evaluates the pyrolysis of lignite particles. The effects of temperature and particle size on the pyrolysis time and final residual mass fraction were evaluated using the numerical model.
[References]
  1. Thomas T, Sandro SJ, Peter G, Int. J. Coal Geol.72, 72, 1, 2007
  2. Sun S, Zhang J, Hu X, Qiu P, Qian J, Qin Y, Korean J. Chem. Eng., 26(2), 554, 2009
  3. Lee JM, Kim DW, Kim JS, Korean J. Chem. Eng., 26(2), 506, 2009
  4. Huang Y, Jin B, Zhong Z, Xiao R, Zhou H, Korean J. Chem. Eng., 24(4), 698, 2007
  5. Zhang JW, Sun SZ, Hu XD, Sun R, Qin YK, Energy Fuels, 23, 2376, 2009
  6. Fang F, Li ZS, Cai NS, Korean J. Chem. Eng., 26(5), 1414, 2009
  7. Prompubess C, Mekasut L, Piumsomboon P, Kuchontara P, Korean J. Chem. Eng., 24(6), 989, 2007
  8. Badzioch S, Hawksley PG, Ind. Eng. Chem. Proc. Des. Dev., 9, 521, 1970
  9. Kobayashi H, Howard JB, Sarofim AF, Sixteenth symposium (international) on combustion, Cambridge, U.K., 1976
  10. Anthony DB, Howard JB, AIChE J., 22, 625, 1976
  11. Saxena SC, Prog. Energy Combust. Sci., 16, 55, 1990
  12. Solomon RP, Serio MA, Suuberg EM, Prog. Energy Combust. Sci., 18, 133, 1992
  13. Essenhigh RH, Chemistry of coal utilization, John Wiley & Sons Inc., New York, 1981
  14. Anthony DB, Howard JB, Hottel HC, Meissuer HP, Fuel., 55, 121, 1976
  15. Sadhukhan AK, Gupta P, Saha RK, J. Anal. Appl. Pyrol., 81, 183, 2008
  16. Sadhukhan AK, Gupta P, Saha RK, Bioresour. Technol., 100, 3134, 2009
  17. Larfeldt J, Leckner B, Melaaen1 MC, Fuel., 79, 1637, 2000
  18. Heidenreich CA, Yan HM, Zhang DK, Fuel, 78(5), 557, 1999
  19. Chern JS, Hayhurst AN, Combust. Flame, 157(5), 925, 2010
  20. Park WC, Atreya A, Baum HR, Combust. Flame, 157(3), 481, 2010
  21. Agarwal PK, Genetti WE, Lee YY, Fuel., 63, 1157, 1984
  22. Stubington JF, Sumaryono K, Fuel., 63, 1013, 1984
  23. Tomeczek J, Kowol J, Can. J. Chem. Eng., 69, 286, 1990
  24. Koch E, Juntgen H, Peters W, Brennstoff Chemie., 50, 366, 1969
  25. Anthony DB, Howard JB, Hottel HC, Meissner HP, Fifteenth symposium (international) on combustion, Tokyo, Japan, 1974
  26. Adesanya BA , Pham HN, Fuel., 74, 896, 1995
  27. Zhao Y, Serio MA, Solomon PR, Twenty-Sixth symposium (international) on combustion, Naples, Italy, 1996
  28. Merrick D, Fuel., 62, 540, 1983
  29. Strezov V, Lucas JA, Evans TJ, Strezov L, J. Therm. Anal. Calorim., 78, 385, 2004
  30. Hanrot F, Ablitzer D, Houzelot JL, Dirand M, Fuel., 73, 305, 1994
  31. Volborth A, Coal science and chemistry, Elsevier, Amsterdam, 1987
  32. Miura K, Maki T, Energy Fuels, 12(5), 864, 1998
  33. Miura K, Energy Fuels, 9(2), 302, 1995