Issue
Korean Journal of Chemical Engineering,
Vol.29, No.1, 95-102, 2012
Arsenic adsorption on goethite nanoparticles produced through hydrazine sulfate assisted synthesis method
Goethite nanoparticles synthesized using hydrazine sulfate as a modifying agent were evaluated for As(V) adsorption capacity. The nanoparticles were characterized for their morphological and structural features. The precipitated goethite particles were spherical with particle size of less than 10 nm. Batch adsorption study was carried out systematically varying parameters such as pH, contact time, initial As(V) concentration and adsorbent doses. The Langmuir isotherm represented the equilibrium data well and the estimated monolayer adsorption capacity at ambient temperature was 76 mg/g, which is significantly higher than most of the adsorbents reported in the literature. Adsorption kinetic data were better represented by the pseudo-second order kinetic model. Intra-particle diffusion played a significant role in the rate controlling process in the initial hour. Desorption study showed that the loaded adsorbent could be regenerated when treated with dilute sodium hydroxide solution of pH 13.
[References]
  1. Bissen M, Frimemel FH, Acta Hydroch. Hydrob., 30(1), 9, 2003
  2. WHO (World Health Organisation) Guidelines for drinking water quality, 1993
  3. Mohan D, Pittman CU, J. Hazard. Mater., 142(1-2), 1, 2007
  4. Pena ME, Korfiatis GP, Patel M, Lippincott L, Meng X, Water Res., 39, 2327, 2005
  5. Mayo JT, Yavuz C, Yean S, Cong L, Shipley H, Yu W, Falkner J, Kan A, Tomson M, Colvin VL, Sci. Technol. Adv. Mat., 8, 71, 2007
  6. Tuutijarvi T, Lu J, Sillanpaa M, Chen G, J. Hazard. Mater., 166(2-3), 1415, 2009
  7. Kanel SR, Greneche JM, Choi H, Environ. Sci. Technol., 40, 2045, 2006
  8. Jegadeesan G, Mondal K, Lalvani SB, Environ. Progr., 24, 289, 2005
  9. Yean S, Cong L, Yavuz CT, Mayo JT, Yu WW, Kan AT, Calvin VL, Tomson MB, J. Mater. Res., 20(12), 3255, 2005
  10. Waychunas GA, Kim CS, Banfield JF, J. Nanopart. Res., 7, 409, 2005
  11. Grossl PR, Sparks DL, Geoderma., 67, 87, 1995
  12. Manning BA, Fendorf SE, Goldberg S, Environ. Sci. Technol., 32, 2383, 1998
  13. Matis KA, Zouboulis AI, Malamas FB, Afonso MDR, Hudson MJ, Environ. Pollut., 97, 239, 1997
  14. Bowell RJ, Appl. Geochem.,, 9, 279, 1994
  15. Fendorf S, Eick MJ, Grossl P, Sparks DL, Environ. Sci. Technol., 31(2), 315, 1997
  16. Music S, Sanc A, Popovic S, Nomura K, Sawada T, Croat.Chem. Acta,, 73(2), 541, 2000
  17. Parida K, Das J, J. Colloid Interface Sci., 178(2), 586, 1996
  18. Ruan HD, Frost RI, Kloprogge JT, Duong L, Spectrochim.Acta A,, 58, 967, 2002
  19. Ristic M, De Grave E, Music S, Popovic S, Orehovec Z, J. Molecular Structure., 834-836, 454, 2007
  20. Tripathy SS, Raichur AM, Chem. Eng. J., 138(1-3), 179, 2008
  21. Lagergren S, Kungliga Svenska Vetenskapsakademiens Handlingar., 24, 1, 1898
  22. Ho YS, McKay G, Process Biochem., 34(5), 451, 1999
  23. Weber WJJ, Morris JC, J. Sanit. Eng. Div. Am. Soc. Civil Engineers., 89, 31, 1963
  24. Altundogan HS, Altundogan S, Tumen F, Bildik M, Waste Manage., 20, 761, 2000
  25. Anderson MA, Ferguson JF, Gavis J, J. Colloid Interface Sci., 54, 391, 1976
  26. Hall KR, Eagleton LC, Acrivos A, Vermeulen T, Ind. Eng.Chem. Fundam., 5, 212, 1966
  27. Sigg L, Aquatic Surface Chemistry: Chemical Processes at the Particle-Water Interface. In: Stum W. (Ed.), John Wiley and Sons, New York, 1987
  28. O’Reilly SE, Strawn DG, Sparks DL, Soil Sci. Soc. Am. J., 65, 67, 2001
  29. Gupta K, Saha S, Ghosh UC, J. Nanopart. Res., 20, 1361, 2008
  30. Solozhenkin PM, Deliyanni EA, Bakoyannakis VN, Zouboulis AI, Matis KA, J. Min. Sci., 39(3), 287, 2003
  31. Wasay SA, Haron MJ, Uchiumi A, Tokunaga S, Water Res., 30(5), 1143, 1996
  32. Park H, Myung NV, Jung H, Choi H, J. Nanopart. Res., 11, 1981, 2009
  33. Mohapatra D, Mishra D, Park KH, J. Environ. Sci., 20, 683, 2008
  34. Chutia P, Kato S, Kojima T, Satokawa S, J. Hazard. Mater., 162(1), 440, 2009
  35. Borah D, Satokawa S, Kato S, Kojima T, J. Colloid Interface Sci., 319(1), 53, 2008