Issue
Korean Journal of Chemical Engineering,
Vol.29, No.1, 89-94, 2012
Investigation of CO2 adsorption by bagasse-based activated carbon
Bagasse-based activated carbon (BAC) and amine-modified BAC were prepared and investigated for CO2 adsorption capacity. Modifying BAC with amines resulted in a decrease of surface area, but the decreasing magnitude varied depending on type and loading rate of amines. At room temperature, the unmodified BAC was able to adsorb more CO2 than the amine-modified BAC. This ability was related to the higher surface area of unmodified than that of the modified BAC. When temperature increased, CO2 adsorption capacity of all absorbents was decreased. However, above 323 K and a concentration of CO2 lower than 30% v/v, the BAC modified with PEI at 5 and 25 wt% showed higher adsorption capacity. Among all adsorbents under 15% CO2 and 348 K, BAC-PEI25 showed the highest adsorption capacity (0.20 mmol/g).
[References]
  1. IPCC, “Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change”, 2007
  2. IPCC, “Carbon Dioxide Capture and Storage”, 2005
  3. Arenillas A, Smith KM, Drage TC, Snape CE, Fuel., 84, 2204, 2005
  4. Ma'mun S, Svendsen HF, Hoff KA, Juliussen O, Energy Conv. Manag., 48(1), 251, 2007
  5. Mignard D, Sahibzada M, Duthie JM, Whittington HW, Int. J. Hydrog. Energy., 28, 455, 2003
  6. Zhao H, Hu J, Wang J, Zhou L, Liu H, Acta Phys-Chim. Sin., 23, 801, 2007
  7. Erga O, Juliussen O, Lidal H, Energy Convers. Manage., 36, 387, 1995
  8. Wall TF, P. Combust. Inst., 31, 31, 2007
  9. Stewart C, Hessami MA, Energy Conv. Manag., 46(3), 403, 2005
  10. Gray ML, Soong Y, Champagne KJ, Baltrus J, Stevens RW, Toochinda P, Chuang SSC, Sep. Purif. Technol., 35(1), 31, 2004
  11. Xu X, Song C, Andresen JM, Miller BG, Scaroni AW, Micropor. Mesopor. Mater., 62, 29, 2003
  12. Guo B, Chang L, Xie K, J. Nat. Gas Chem., 15, 223, 2006
  13. Sarkar SC, Bose A, Energy Conv. Manag., 38, S105, 1997
  14. Sun Y, Wang YX, Zhang Y, Zhou YP, Zhou L, Chem. Phys. Lett., 437(1-3), 14, 2007
  15. Son SJ, Choi JS, Choo KY, Song SD, Vijayalakshmi S, Kim TH, Korean J. Chem. Eng., 22(2), 291, 2005
  16. Wu G, Jeong TS, Won CH, Cui L, Korean J. Chem. Eng., 27(5), 1476, 2010
  17. Thambimuthu K, Davidson J, Gupta M, “CO2 capture and reuse” (IPCC Workshop on Carbon Capture Regina, Canada, 2002).
  18. Van Der Vaart R, Huiskes C, Bosch H, Reith T, Adsorption., 6, 311, 2000
  19. Maroto-Valer MM, Tang Z, Zhang YZ, Fuel Process. Technol., 86(14-15), 1487, 2005
  20. Pevida C, Plaza MG, Arias B, Fermoso J, Rubiera F, Pis JJ, Appl. Surf. Sci., 254(22), 7165, 2008
  21. Zhu T, Yang S, Choi DK, Row KH, Korean J. Chem. Eng., 27(6), 1910, 2010
  22. Tsai WT, Chang CY, Lee SL, Bioresour. Technol., 64(3), 211, 1998
  23. Onal Y, Akmil-Basar C, Sarici-Ozdemir C, Erdogan S, J. Hazard. Mater., 142(1-2), 138, 2007
  24. Stubington JF, Aiman S, Energy Fuels, 8(1), 194, 1994
  25. Ioannidou O, Zabaniotou A, Renew. Sust. Energy Rev., 11, 1966, 2007
  26. Sing KSW, Everett DH, Haul RAW, Moscou L, Pierott RAi, Rouquerol J, Siemieniewska T, Pure. Appl. Chem., 57, 603, 1985
  27. Gray ML, Champagne KJ, Fauth D, Baltrus JP, Pennline H, Int. J. Green Gas Con., 2, 3, 2008
  28. Hwang KS, Han L, Park DW, Oh KJ, Kim SS, Park SW, Korean J. Chem. Eng., 27(1), 241, 2010
  29. Plaza MG, Pevida C, Arenillas A, Rubiera F, Pis JJ, Fuel., 86, 2204, 2007
  30. Chen C, You KS, Ahn JW, Ahn WS, Korean J. Chem. Eng., 27(3), 1010, 2010