Issue
Korean Journal of Chemical Engineering,
Vol.29, No.1, 125-129, 2012
Synthesis of polypyrrole-reduced graphene oxide composites by in-situ photopolymerization and its application as a supercapacitor electrode
A highly conductive polypyrrole (PPy)-reduced graphene oxide (RGO) composite with an electrical conductivity of 610 S m^(-1) was successfully synthesized by the in-situ photopolymerization of pyrrole in a graphene oxide suspension. Graphene oxide (GO) played the role of an electron acceptor and was reduced as it accepted electrons. The reduction of GO was confirmed by the increase in the C/O ratio of RGO with the UV irradiation time as well as the high electrical conductivity of PPy-RGO composite. Through the thermogravimetric analysis, it has been found that the PPy-RGO composite exhibited high thermal stability compared to the GO and PPy. This material was used as an electrode in a supercapacitor cell and showed excellent performance for electrical energy storage. The composite exhibited a specific capacitance of 376 F g^(-1) at a scan rate of 25 mV s^(-1).
[References]
  1. Geim AK, Novoselov KS, Nature Mater., 6, 183, 2007
  2. Jang BZ, Zhamu A, J. Mater. Sci., 43(15), 5092, 2008
  3. Park S, Ruoff RS, Nature Nanotechnol., 4, 217, 2009
  4. Stankovich S, Dikin DA, Dommett GHB, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen SBT, Ruoff RS, Nature., 442, 282, 2006
  5. Ramanathan T, Abdala AA, Stankovich S, Dikin DA, Herrera-Alonso M, Piner RD, Adamson DH, Schiepp HC, Chen X, Ruoff RS, Nguyen ST, Aksay IA, Prud’homme RK, Brison LC, Nature Nanotechnol., 3, 327, 2008
  6. Zhao X, Zhang QH, Chen DJ, Lu P, Macromolecules, 43(5), 2357, 2010
  7. Zhang K, Zhang LL, Zhao XS, Wu J, Chem. Mater., 22, 1392, 2010
  8. Yan J, Wei T, Shao B, Fan Z, Qian W, Zhang M, Wei F, Carbon., 48, 487, 2010
  9. Wang LX, Li XG, Yang YL, React. Funct. Polym., 47, 125, 2001
  10. An KH, Jeon KK, Heo JK, Lim SC, Bae DJ, Lee YH, J. Electrochem. Soc., 149, 1058, 2002
  11. Biswas S, Drzal LT, Chem. Mater., 22, 5667, 2010
  12. Li D, Muller MB, Gilje S, Kaner RB, Wallace GG, Nature Nanotechnol., 3, 101, 2008
  13. Park S, An J, Jung I, Piner RD, An SJ, Li X, Velamakanni A, Ruoff RS, Nano Lett., 9, 1593, 2009
  14. Rodriguez I, Gonzalez-Velasco J, J. Chem. Soc. Chem. Commun., 5, 387, 1990
  15. Breimer MA, Yevgeny G, Sy S, Sadik OA, Nano Lett., 1, 305, 2001
  16. Martins CR, de Almeida YM, do Nascimento GC, de Azevedo WM, J. Mater. Sci., 41(22), 7413, 2006
  17. Weng Z, Ni XY, J. Appl. Polym. Sci., 110(1), 109, 2008
  18. Zhang LL, Zhou R, Zhao XS, J. Mater. Chem., 20, 5983, 2010
  19. Pham VH, Cuong TV, Nguyen-Phan TD, Pham HD, Kim EJ, Hur SH, Shin EW, Kim S, Chung JS, Chem. Commun., 46, 4375, 2010
  20. Stoller MD, Ruoff RS, Energy Environ. Sci., 3, 1294, 2010
  21. Hughes M, Chen GZ, Shaffer MSP, Fray DJ, Windle AH, Chem. Mater., 14, 1610, 2002
  22. Stoller MD, Park S, Zhu Y, An J, Ruoff RS, Nano Lett., 8, 3498, 2008
  23. Yan J, Wei T, Shao B, Ma F, Fan Z, Zhang M, Zheng C, Shang Y, Qian W, Wei F, Carbon., 48, 1731, 2010