Issue
Korean Journal of Chemical Engineering,
Vol.16, No.5, 585-594, 1999
Deformation and Breakup of a Second-Order Fluid Droplet in an Electric Field
The effects of elastic property on the deformation and breakup of an uncharged drop in a uniform electric field are investigated theoretically using the second-order fluid model as a constitutive equation. Two dimensionless numbers, the electric capillary number (C) and the Deborah number (De), the dimensionless parammeters governing the problem. The asymptotic analytic solution of the nonlinear free boundary problem is determined by utilizing the method of domain perturbation in the limit of small mathcal C and small De. The asymptotic solution provides the limiting point of C above which no steady-state drop shape exists. The linear stability theory shows that the elastic property of fluids give either stabilizing or destabilizing effect on the drop, depending on the deformation mode.
[References]
  1. Ajayi OO, Proc. R. Soc. Lond. A, 364, 499, 1978
  2. Arp PA, Foister RT, Mason SG, Adv. Colloid Interface Sci., 12, 295, 1980
  3. Barthes-Biesel D, Acrivos A, J. Fluid Mech., 61, 1, 1973
  4. Basaran OA, Scriven LE, Phys. Fluids, A1, 799, 1989
  5. Bird RB, Armstrong RC, Hassager O, "Dynamics of Polymeric Liquids," 2nd ed., John Wiley, New York, 1987
  6. Elmendorp JJ, Maalcke RJ, Polym. Eng. Sci., 25, 1041, 1985
  7. Garton CG, Krasucki Z, Proc. R. Soc. Lond. A, A280, 211, 1964
  8. Ha JW, Yang SM, J. Colloid Interface Sci., 175(2), 369, 1995
  9. Ha JW, Yang SM, J. Colloid Interface Sci., 206(1), 195, 1998
  10. Ha JW, Yang SM, Phys. Fluids, 11, 1029, 1999
  11. Ha JW, Yang SM, Colloid Interface Sci., 213, 92, 1999
  12. Kang IS, Leal LG, J. Fluid Mech., 187, 231, 1988
  13. Leal LG, J. Fluid Mech., 69, 305, 1975
  14. Leal LG, "Laminar Flow and Convective Transport Processes Scaling Principles and Asymptotic Analysis," Butterworth-Heinemann, Boston, 1992
  15. Mackay ME, Boger DV, J. Non-Newton. Fluid Mech., 22, 235, 1987
  16. Melcher JR, Taylor GI, Annu. Rev. Fluid Mech., 1, 111, 1969
  17. Miksis MJ, Phys. Fluids, 24, 1967, 1981
  18. Moriya S, Adachi K, Kotaka T, Langmuir, 2, 155, 1986
  19. Saville DA, Phys. Fluids, 13, 2987, 1970
  20. Saville DA, Annu. Rev. Fluid Mech., 29, 27, 1997
  21. Taylor GI, Proc. R. Soc. Lond. A, A291, 159, 1964
  22. Taylor GI, Proc. R. Soc. Lond. A, A313, 453, 1969
  23. Taylor GI, Proc. R. Soc. Lond. A, A291, 159, 1966
  24. Torza S, Cox RG, Mason SG, Phil. Trans. R. Soc. Lond., 269, 259, 1971
  25. Tam KC, Tiu C, J. Non-Newton. Fluid Mech., 31, 163, 1989
  26. Venugopal G, Krause S, Macromolecules, 25, 4626, 1992
  27. Vizika O, Saville DA, J. Fluid Mech., 239, 1, 1992
  28. Yang SM, Feng ZC, Leal LG, J. Fluid Mech., 247, 417, 1993
  29. Xi K, Krause S, Macromolecules, 31(12), 3974, 1998