Issue
Korean Journal of Chemical Engineering,
Vol.16, No.4, 427-433, 1999
Materials for Catalytic Gas Combustion
Catalytic combustion, which permits to burn lean fuel/air mixtures is the key to environmentally preferable utilization of natural gas as an energy source and to removal of organic combustible gases from industrial effluents. The range of potential applications of catalytic combustion is large and can vary in temperatures of operation. Successful wide implementation of existing and of new catalytic combustion technologies will largely depend on the availability of suitable low cost catalytic materials. Since no single material can meet all demands, development of new catalysts needs to be orchestrated with the specific requirements of a given technology. The challenge is to combine existing knowledge and expertise in the area of combustion catalysts with innovations in their synthesis, improved formulations and applications in new specific composite forms. This paper outlines the current state of art and then focuses on perovskites for applications below 1,000K. Examples of highly active formulations and of further enhancement of their activity through controlled synthesis and suitable support combinations are given. Criteria for the design of highly performing materals for high temperature catalytic combustion are also presented.
[References]
  1. Anderson RB, Stein KC, Feenan JJ, Hofer LJE, Ind. Eng. Chem., 53(10), 809, 1961
  2. Andrushkevitch TV, Popovskii VV, Boreskov GK, Kinetika i Kataliz, 6, 860, 1965
  3. Arai H, Machida M, Catal. Today, 10, 81, 1991
  4. Arai H, Yamada T, Eguchi K, Seiyama T, Appl. Catal., 26, 265, 1986
  5. Blazowski WS, Walsh DE, Combust. Sci. Technol., 10, 233, 1975
  6. Chaouki J, Guy C, Sapundzhiev C, Kusohorsky D, Klvana D, Ind. Eng. Chem. Res., 33(12), 2957, 1994
  7. Chaouki J, Klvana D, Guy C, Kirchnerova J, Kusohorsky D, "Catalytic Combustion of Organic Compounds: Perovskite Catalysts and Combustion Technologies," 3e Congres Odeures & COV, Paris, 1995
  8. Choudhary VR, Rane VH, J. Catal., 130, 411, 1991
  9. Dallabetta RA, Catal. Today, 35(1-2), 129, 1997
  10. Chaouki J, Klvana D, Chem. Eng. Sci., 49(24), 4639, 1994
  11. Golodets GI, "Heterogeneous Catalytic Reactions Involving Molecular Oxygen," Studies in Surf. Sci. Catal., Elsevier, Amsterdam, 15, Chap. 15, 1983
  12. Groppi G, Belloto M, Cristiani C, Forzatti P, Villa PL, Appl. Catal. A: Gen., 104, 101, 1993
  13. Houdry EJ, "Catalytic Treatment of Gas Streams," U.S. Patent, 2,946,651, July 26, 1960, 1960
  14. Houston R, "Regenerative Incinerator Systems for Waste Gases," U.S. Patent, 3,870,474, Mar. 11, 1975, 1975
  15. Kirchnerova J, Klvana D, Solid State Ion., in print, 1999
  16. Kirchnerova J, Vaillancourt J, Klvana D, Chaouki J, Catal. Lett., 21(1-2), 77, 1993
  17. Klvana D, Chaouki J, Guy C, Kirchnerova J, Combust. Sci. Technol., 121(1-6), 51, 1996
  18. Klvana D, Delval J, Kirchnerova J, Appl. Catal. A: Gen., 165(1-2), 171, 1997
  19. Klvana D, Kirchnerova J, Gauthier P, Delval J, Chaouki J, Can. J. Chem. Eng., 75(3), 509, 1997
  20. Klvana D, Vaillancourt J, Kirchnerova J, Chaouki J, Appl. Catal. A: Gen., 109(2), 181, 1994
  21. Lee JH, Trimm DL, Fuel Process. Technol., 42(2), 339, 1995
  22. Libby WF, Science, 171, 499, 1971
  23. McCarty JG, Wise H, Catal. Today, 8, 231, 1990
  24. Mccarty JG, Catal. Today, 26(3-4), 283, 1995
  25. Machida M, Eguchi K, Arai H, J. Catal., 123, 477, 1990
  26. Machida M, Eguchi K, Arai H, Chem. Lett.(5), 767, 1987
  27. Matros YS, McCombs DE, "Process and Apparatus for Gas Phase Reaction in a Regenerative Incinerator," U.S. Patent, 5,364,259, 15, 1994
  28. Pfefferle WC, J. Energy, 2(3), 142, 1978
  29. Pfefferle LD, Pfefferle WC, Catal. Rev.-Sci. Eng., 26(2-3), 219, 1987
  30. Prasad R, Kennedy LA, Ruckenstein E, Combust. Sci. Technol., 22(5-6), 271, 1980
  31. Prasad R, Kennedy LA, Ruckenstein E, Catal. Rev.-Sci. Eng., 26(1), 1, 1984
  32. Rehspringer JL, Poix P, Kaddouri A, Andriamasinoro D, Kiennemann A, Catal. Lett., 10, 111, 1991
  33. Ribeiro FH, Chow M, Dalla Beta RA, J. Catal., 130, 411, 1991
  34. Saintjust J, Derkinderen J, Catal. Today, 29(1-4), 387, 1996
  35. Seiyama T, "Total Oxidation of Hydrocarbons on Perovskite Oxides," in "Properties and Applications of Perovskite-Type Oxides," Tejuca, L.G. and Fierro, J.L.G., eds., Chem. Ind., Dekker, 50, 1993
  36. Shelley S, Chem. Eng., 102(1), 135, 1995
  37. Tejuca RJ, Fierro JLG, Tascon JMD, "Structure and Reactivity of Perovskite-Type Oxides," In Eley, D.D., Pines, H. and Weisz, P.B. (eds.), Advances in Catalysis, Academic Press, New York, 36, 1989
  38. Trimm DL, Lam C, Chem. Eng. Sci., 35, 1405, 1980
  39. Trimm DL, Appl. Catal., 7, 249, 1984
  40. Voorhoeve RJH, "Perovskite Oxidation-Reduction Catalysts," in "Advanced Materials in Catalysis," Burton, J.J. and Carten, R.L., Eds., Academic Press, New York, 1977
  41. Weiss G, Gas-Wasserfach, 103, 469, 1962
  42. Windawi H, Chu W, Chem. Eng. Prog., March, 37, 1996
  43. Yao YFY, J. Catal., 36, 266, 1975
  44. Zamar F, Trovarelli A, de Leitenburg C, Dolcetti G, J. Chem. Soc.-Chem. Commun.(9), 965, 1995
  45. Zernike J, Chem. Weekbl., 63, 321, 1967
  46. Zwinkels MFM, Jaras SG, Menon PG, Catal. Rev.-Sci. Eng., 35(3), 319, 1993