Issue
Korean Journal of Chemical Engineering,
Vol.29, No.1, 120-124, 2012
Optical properties of TiO2 nanorods modified by electron-donating stabilizers
A significant change in the UV-vis absorption of TiO2 nanorods (NRs) was induced by changing electrondonating stabilizer from oleic acid (OA) to acrylic acid (AcA). When TiO2 NRs with an average size of 2.5 nm in diameter and 30 nm in length were dispersed in an aqueous AcA solution, a red shift in the optical absorption (0.73 eV at the band edge and 0.55 eV at the onset) was observed. The red shift was attributed to an increase in the electron density inside the TiO2 NRs. The applicability of the AcA-exchanged TiO2 NRs for the photocatalyst as well as a UV sensor was evaluated. The AcA-exchanged TiO2 NRs showed significant photocatalytic activity on the degradation of toluene in the visible light region. Moreover, thin film of the AcA-exchanged TiO2 NRs on a quartz plate was tested as a UV sensor and it exhibited a good response to a wide range of the UV light.
[References]
  1. Chen X, Mao SS, Chem. Rev., 107(7), 2891, 2007
  2. Niederberger M, Garnweitner G, Krumeich F, Nesper R, Clfen H, Antonietti M, Chem. Mater., 16, 1202, 2004
  3. Diaz D, Robles J, Ni T, Castillo-Blum SE, Nagesha D, Alvarez-Fregoso OJ, Kotov NA, J. Phys. Chem. B, 103(45), 9859, 1999
  4. Dubois F, Mahler B, Dubertret B, Doris E, Mioskowski C, J. Am. Chem. Soc., 129(3), 482, 2007
  5. Kalyuzhny G, Murray RW, Am. Chem. Soc., 109, 7012, 2005
  6. Wang MF, Oh JK, Dykstra TE, Lou XD, Scholes GD, Winnik MA, Macromolecules, 39(10), 3664, 2006
  7. Munro AM, Jen-La Plante I, Ng MS, Ginger DS, J. Phys. Chem. C., 111, 6220, 2007
  8. Schmelz O, Mews A, Basche T, Herrmann A, Mullen K, Langmuir, 17(9), 2861, 2001
  9. Ji XH, Copenhaver D, Sichmeller C, Peng XG, J. Am. Chem. Soc., 130(17), 5726, 2008
  10. Petruska MA, Bartko AP, Klimov VI, J. Am. Chem. Soc., 126(3), 714, 2004
  11. Jang E, Jun S, Chung YS, Pu LS, J. Phys. Chem. B, 108(15), 4597, 2004
  12. Vo DQ, Kim EJ, Kim S, J. Colloid Interface Sci., 337(1), 75, 2009
  13. Cozzoli PD, Kornowski A, Weller H, J. Am. Chem. Soc., 125(47), 14539, 2003
  14. Ghosh HN, Adhikari S, Langmuir, 17(13), 4129, 2001
  15. Sasaki T, Watanabe M, J. Phys. Chem. B, 101(49), 10159, 1997
  16. Sasaki T, Supramol. Sci., 5, 367, 1998
  17. Bavykin DV, Gordeev SN, Moskalenko AV, Lapkin AA, Walsh FC, J. Phys. Chem. B, 109(18), 8565, 2005
  18. Wu N, Fu L, Su M, Aslam M, Wong KC, Dravid VP, Nano Lett., 4, 383, 2004
  19. Beranek R, Kisch H, Photochem. Photobiol. Sci., 7, 40, 2008
  20. Saha NC, Tompkins HG, J. Appl. Phys., 72, 3072, 1992
  21. Yin Y, Alivisatos AP, Nature., 437, 664, 2005
  22. Hodes G, Adv. Mater., 19(5), 639, 2007
  23. Braginsky L, Shklover V, Eur. Phys. J. D., 9, 627, 1999
  24. Tsai MC, Tsai TL, Lin CT, Chung RJ, Sheu HS, Chiu HT, Lee CY, J. Phys. Chem. C., 112, 2697, 2008
  25. Kim SB, Hong SC, Appl. Catal. B: Environ., 35(4), 305, 2002
  26. Khan R, Kim TJ, J. Hazard. Mater., 163(2-3), 1179, 2009
  27. Irokawa Y, Morikawa T, Aoki K, Kosaka S, Ohwaki T, Taga Y, Phys. Chem. Chem. Phys., 8, 1116, 2006
  28. Bosc F, Edwards D, Keller N, Keller V, Ayral A, Thin Solid Films, 495(1-2), 272, 2006
  29. Kar JP, Das SN, Choi JH, Lee YA, Lee TY, Myoung JM, J. Cryst. Growth, 311(12), 3305, 2009
  30. Zheng XG, Li QS, Cent. J. Phys. A., 81, 1281, 2005
  31. Hullavarad SS, Hullavarad NV, Karulkar PC, Luykx A, Valdivia P, Nanoscale Res. Lett., 2, 161, 2007