Issue
Korean Journal of Chemical Engineering,
Vol.28, No.11, 2137-2141, 2011
Scanning tunneling microscopy and tunneling spectroscopy studies of niobium-containing H6+xP2W18-xNbxO62 (x=0, 1, 2, 3) Wells-Dawson heteropolyacid catalysts to probe their redox property and oxidation catalysis
Niobium-containing H6+xP2W18-xNbxO62 (x=0, 1, 2, 3) Wells-Dawson heteropolyacids (HPAs) were investigated by scanning tunneling microscopy (STM) and tunneling spectroscopy (TS) in order to elucidate their redox properties. The HPAs formed two-dimensional well-ordered monolayer arrays on graphite surface and exhibited a distinctive current-voltage behavior called negative differential resistance (NDR) in their tunneling spectra. NDR peak voltage measured on HPA molecule was correlated with reduction potential and absorption edge energy determined by electrochemical method and UV-visible spectroscopy, respectively. NDR peak voltage of H6+xP2W18-xNbxO62 Wells-Dawson HPAs appeared at less negative voltage with increasing reduction potential and with decreasing absorption edge energy. Oxidative dehydrogenation of isobutyraldehyde was also carried out as a model reaction to probe oxidation catalysis of the HPAs. The trend of NDR peak voltage of H6+xP2W18-xNbxO62 Wells-Dawson HPAs was well consistent with the trend of yield for methacrolein.
[References]
  1. Barth JV, Costantini G, Kern K, Nature., 437, 671, 2005
  2. Tomimoto H, Sumii R, Shirota N, Yagi S, Taniguchi M, Sekitani T, Tanaka K, J. Vac. Sci. Technol. B, 18(5), 2335, 2000
  3. Prauzner-Bechcicki JS, Godlewski S, Tekiel A, Cyganik P, Budzioch J, Szymonski M, J. Phys. Chem. C., 113, 9309, 2009
  4. Suzuki S, Yamaguchi Y, Onishi H, Fukui K, Sasaki T, Iwasawa Y, Catal. Lett., 50(3-4), 117, 1998
  5. Takimoto K, Kuroda R, Shido S, Yasuda S, Matsuda H, Eguchi K, Nakagiri T, J. Vac. Sci. Technol. B, 15(4), 1429, 1997
  6. Lauritsen JV, Vang RT, Besenbacher F, Catal. Today, 111(1-2), 34, 2006
  7. Matthiesen J, Wendt S, Hansen JØ, Madsen GKH, Lira E, Galliker P, Vestergaard EK, Schaub R, Laegsgaard E, Hammer B, Besenbacher F, ACS Nano., 3, 517, 2009
  8. Stipe BC, Rezaei MA, Ho W, Science, 280(5370), 1732, 1998
  9. Johansson MKJ, Gray SM, Johansson LSO, J. Vac. Sci. Technol. B., 14, 1015, 1998
  10. Mussig HJ, Kruger D, Hinrich S, Hansson PO, Surf. Sci., 314, L884, 1994
  11. Guisinger NP, Greene ME, Basu R, Baluch AS, Hersam MC, Nano Lett., 4, 55, 2004
  12. Grobis M, Wachowiak A, Yamachika R, Crommie MF, Appl. Phys. Lett., 86, 204102, 2005
  13. Fan Z, Chen K, Wan Q, Zou BS, Duan W, Shuai Z, Appl. Phys. Lett., 92, 263304, 2008
  14. Lindsay SM, Sankey OF, Li Y, Herbst C, J. Phys. Chem., 94, 4655, 1990
  15. Song IK, Kaba MS, Coulston G, Kourtakis K, Barteau MA, Chem. Mater., 8, 2352, 1996
  16. Song IK, Barteau MA, Korean J. Chem. Eng., 19(4), 567, 2002
  17. Mizuno N, Misono M, Chem. Rev., 98(1), 199, 1998
  18. Park DR, Hong UG, Song SH, Seo JG, Baeck SH, Chung JS, Song IK, Korean J. Chem. Eng., 27(2), 465, 2010
  19. Bang Y, Park DR, Lee YJ, Jung JC, Song IK, Korean J. Chem. Eng., 27, 79, 2011
  20. Briand LE, Baronetti GT, Thomas HJ, Appl. Catal. A: Gen., 256(1-2), 37, 2003
  21. Weber RS, J. Phys. Chem., 98(11), 2999, 1994
  22. Jonnevijlle F, Tourne CM, Tourne GF, Inorg. Chem., 21, 2742, 1982
  23. Park DR, Song JH, Lee SH, Song SH, Kim H, Jung JC, Song IK, Appl. Catal. A: Gen., 349(1-2), 222, 2008
  24. Park DR, Choi JH, Park S, Song IK, Appl. Catal. A: Gen., 394(1-2), 201, 2011
  25. Dawson B, Acta. Cryst., 6, 113, 1953
  26. Yamase T, Chem. Rev., 98(1), 307, 1998
  27. Youn MH, Park DR, Jung JC, Kim H, Barteau MA, Song IK, Korean J. Chem. Eng., 24(1), 51, 2007
  28. Hu J, Burns RC, Guerbois JP, J. Mol. Catal. A-Chem., 152(1-2), 141, 2000
  29. Misono M, Polyoxometalates: From platonic solid to anti-retroviral activity, Kluwer, Dordrecht, 1994