Issue
Korean Journal of Chemical Engineering,
Vol.28, No.11, 2122-2129, 2011
The effect of an electrostatic field on the rupture of a thin viscous static film by van der Waals attractions
This research examines rupture phenomena of a horizontal static thin viscous layer on a solid plate under an electrostatic field generating from a charged foil above the film. The dynamics of the electrified liquid film is formulated to derive a long-wave evolution equation of local film thickness. It determines two-dimensional nonlinear behavior of the film subject to surface tension, viscous, electrically induced forces, and van der Waals attractions. Linear stability analysis is used to obtain the maximum growth rate of a periodic disturbance and its corresponding wavenumber. To see the development of film rupture the strongly nonlinear partial differential equation is numerically solved for the unlimited or limited foil length as part of an initial-value problem with spatially periodic boundary conditions. The stronger electric forces make the thin layer more unstable and speed up its rupture.
[References]
  1. Ruckenstein E, Jain RK, Chem. Soc. Farady Trans., 70, 132, 1974
  2. Scheludko A, Adv. Colloid Interface Sci., 1, 391, 1967
  3. Williams MB, Davis SH, J. Colloid Interface Sci., 90, 220, 1982
  4. Burelbach JP, Bankoff SG, Davis SH, J. Fluid Mech., 195, 463, 1988
  5. Kim H, Bankoff SG, Miksis MJ, Phys. Fluids A., 4, 2117, 1992
  6. Griffing EM, Bankoff SG, Miksis MJ, Schluter RA, ASME I: J. Fluids Eng., 128, 276, 2006
  7. Schaffer E, Thurn-Albrecht T, Russell TP, Steiner U, Nature., 403, 874, 2000
  8. Schaffer E, Thurn-Albrecht T, Russell TP, Steiner U, Europhys. Lett., 53, 518, 2001
  9. Lin ZQ, Kerle T, Russell TP, Schaffer E, Steiner U, Macromolecules, 35(10), 3971, 2002
  10. Blyth MG, J. Fluid Mech., 595, 221, 2008
  11. Tseluiko D, Papageorgiou DT, SIAM J. Appl. Math., 67, 1310, 2007
  12. Tilley BS, Petropoulos PG, Papageorgiou DT, Phys. Fluids., 13, 3547, 2001
  13. Savettaseranee K, Papageorgiou DT, Petropoulos PG, Tilley BS, Phys. Fluids., 15, 641, 2003
  14. Landau LD, Lifshitz EM, Pitaevskii LP, Electrodynamics of Continuous Media, 2nd Ed., Pergamon, New York, 1984
  15. Morse PM, Feshbach H, Methods of Theoretical Physics, McGraw-Hill, New York, 1953