Issue
Korean Journal of Chemical Engineering,
Vol.28, No.11, 2178-2183, 2011
Visible light-irradiated degradation of alachlor on Fe-TiO2 with assistance of H2O2
0.1 Fe/Ti mole ratio of Fe-TiO2 catalysts were synthesized via solvothermal method and calcined at various temperatures: 300, 400, and 500 ℃. The calcined catalysts were characterized by XRD, N2-adsorption-desorption, UVDRS, XRF, and Zeta potential and tested for photocatalytic degradation of alachlor under visible light. The calcined catalysts consisted only of anatase phase. The BET specific surface area decreased with the calcination temperatures. The doping Fe ion induced a red shift of absorption capacity from UV to the visible region. The Fe-TiO2 calcined at 400 ℃ showed the highest photocatalytic activity on degradation of alachlor with assistance of 30 mM H2O2 at pH 3 under visible light irradiation. The degradation fitted well with Langmuir-Hinshelwood model that gave adsorption coefficient and the reaction rate constant of 0.683 L mg^(-1) and 0.136 mg/L·min, respectively.
[References]
  1. Lee WJ, Hoppin JA, Blair A, Lubin JH, Dosemeci M, Sandler DP, Alavanja MCR, Am. J. Epidemiol., 159, 373, 2004
  2. Benzbaruah AN, Thompson JM, Chishilm BJ, J. Environ. Sci. Health Part B., 44, 518, 2009
  3. Atheba P, Robert D, Trokourev A, Bamba D, Weber JV, Water Sci. Technol., 60, 2187, 2009
  4. Kim MS, Ryu CH, Kim BW, Water Res., 39, 525, 2005
  5. Wong CC, Chu W, Environ. Sci. Technol., 37, 2310, 2003
  6. Ryu CS, Kim MS, Kim BW, Chemosphere., 53, 765, 2003
  7. Artkla S, Wantala K, Srinameb BO, Grisdanurak N, Klysubun W, Wittayakun J, Korean J. Chem. Eng., 26(6), 1556, 2009
  8. Wantala K, Tipayarom D, Laokiat L, Grisdanurak N, React. Kinet. Catal. Lett., 97(2), 249, 2009
  9. Deng LX, Wang SR, Liu DY, Zhu BL, Huang WP, Wu SH, Zhang SM, Catal. Lett., 129(3-4), 513, 2009
  10. Wantala K, Loakiat L, Khemthong P, Grisdanurak N, Fukaya K, J. Taiwan Inst. Chem. Eng., 41, 612, 2010
  11. Wang J, Li J, Zhang LQ, Li CW, Xie YP, Liu B, Xu R, Zhang XD, Catal. Lett., 130(3-4), 551, 2009
  12. Wong CC, Chu W, Chemosphere., 50, 981, 2003
  13. Dionysiou DD, Suidan MT, Baudin I, Laine JM, Appl. Catal. B: Environ., 50(4), 259, 2004
  14. Yu JG, Xiang QJ, Zhou MH, Appl. Catal. B: Environ., 90(3-4), 595, 2009
  15. Li JX, Xu JH, Dai WL, Li HX, Fan KN, Appl. Catal. B: Environ., 85(3-4), 162, 2009
  16. Surolia PK, Tayade RJ, Jasra RV, Ind. Eng. Chem. Res., 46(19), 6196, 2007
  17. Wang XH, Li JG, Kamiyama H, Katada M, Ohashi N, Moriyoshi Y, Ishigaki T, J. Am. Chem. Soc., 127(31), 10982, 2005
  18. Murphy AB, Sol. Energ. Mater. Sol. C., 91, 1326, 2007
  19. Chu W, Wong CC, Ind. Eng. Chem. Res., 43(17), 5027, 2004
  20. Perez MH, Penuela G, Maldonado MI, Malato O, Fernandez-Ibanez P, Oller I, Gernjak W, Malato S, Appl. Catal. B: Environ., 64(3-4), 272, 2006
  21. Penuela GA, Barcelo D, J. Chromatogr. A., 754, 187, 1996
  22. Bolton JR, Bircher KG, Tumas W, Tolman CA, Pure Appl. Chem., 73, 627, 2001
  23. Mahmoodi NM, Arami M, J. Alloy Compd., 506, 155, 2010